


Fundamentals and
Applications with PIC

MICROCONTROLLERS





CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton   London   New York

Fundamentals and
Applications with PIC

MICROCONTROLLERS

Fernando E. Valdes-Perez
Ramon Pallas-Areny



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2009 by Taylor & Francis Group, LLC 
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑4200‑7767‑4 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher can‑
not assume responsibility for the validity of all materials or the consequences of their use. The 
authors and publishers have attempted to trace the copyright holders of all material reproduced 
in this publication and apologize to copyright holders if permission to publish in this form has not 
been obtained. If any copyright material has not been acknowledged please write and let us know so 
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy‑
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that pro‑
vides licenses and registration for a variety of users. For organizations that have been granted a 
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and 
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Valdés Pérez, Fernando E.
Microcontrollers : fundamentals and applications with PIC / authors, Fernando 

E. Valdes‑Perez and Ramon Pallas‑Areny.
p. cm.

Includes bibliographical references and index.
ISBN 978‑1‑4200‑7767‑4 (alk. paper)
1. Programmable controllers. 2. Microcontrollers. I. Pallàs‑Areny, Ramón. II. 

Title. 

TJ223.P76V346 2009
629.8’9‑‑dc22 2008044213

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



v

Contents

Preface..................................................................................................................xi
The Authors..................................................................................................... xiii

	 1	 Introduction to Microcontrollers............................................................. 1
1.1	 �Microprocessors and Microcontrollers: Characterization.......... 1
1.2	 Components of a Microcontroller................................................... 3

1.2.1	 The Watchdog....................................................................... 5
1.2.2	 Reset Signal........................................................................... 6
1.2.3	 Low Consumption............................................................... 7
1.2.4	 Protection against Copying................................................ 8

1.3	 Von Neumann and Harvard Architectures.................................. 9
1.4	 CISC and RISC Architectures....................................................... 11
1.5	 Manufacturers of Microcontrollers and Microprocessors........ 12

	 2	 PIC Microcontrollers................................................................................ 15
2.1	 Main Characteristics of PIC Microcontrollers............................ 15

2.1.1	 The Arithmetic and Logic Unit (ALU) and the 
Working Register in PIC Microcontrollers..................... 16

2.1.2	 Machine Cycles and Execution of Instructions............. 17
2.1.3	 Pipelining for Instruction Execution.............................. 18
2.1.4	 Oscillators........................................................................... 19
2.1.5	 Configuration Bits.............................................................. 21
2.1.6	 Reset Options..................................................................... 22
2.1.7	 Low-Power Consumption Mode...................................... 27
2.1.8	 Watchdog Timer................................................................. 27

2.2	 PIC Microcontroller Families........................................................ 28
2.2.1	 Low-End Microcontrollers................................................ 29
2.2.2	 Medium-End Microcontrollers........................................ 30
2.2.3	 High-End Microcontrollers.............................................. 32

	 3	 Memory in Microcontrollers.................................................................. 39
3.1	 Basic Concepts................................................................................. 39

3.1.1	 Logic Organization of Memory....................................... 41
3.1.2	 Types of Memory............................................................... 43

3.2	 Memory in Medium-End PIC Microcontrollers......................... 44
3.2.1	 Program Memory.............................................................. 44

3.2.1.1	 Addressing Program Memory......................... 45
3.2.1.2	 Reading and Writing the Program 

Memory................................................................ 47
3.2.2	 RAM Data Memory........................................................... 51



vi	 Contents

3.2.2.1	 Addressing Data Memory................................. 51
3.2.2.2	 Special Function Registers (SFRs).................... 54

3.2.3	 EEPROM Data Memory.................................................... 58

	 4	 Instruction Set and Assembler Language Programming................ 61
4.1	 Basic Concepts................................................................................. 61

4.1.1	 Machine Code and Assembler Language...................... 61
4.1.2	 Structure of Instructions................................................... 64
4.1.3	 Data Addressing Modes................................................... 65
4.1.4	 The Stack............................................................................. 67

4.2	 Instruction Set in Medium-End PIC Microcontrollers.............. 69
4.2.1	 Data Transfer Instructions................................................ 71
4.2.2	 Arithmetic and Logic Instructions.................................. 72
4.2.3	 Control Transfer Instructions........................................... 74

4.2.3.1	 Unconditional Branches, Subroutine 
Calls, and Returns.............................................. 74

4.2.3.2	 Conditional Branches........................................ 78
4.2.4	 Bit Manipulation Instructions.......................................... 81
4.2.5	 Other Instructions............................................................. 81

4.3	 Assembler Language Elements (for MPASM Assembler 
from Microchip).............................................................................. 82
4.3.1	 Introduction........................................................................ 82
4.3.2	 Expressions, Operations, and Operators........................ 87

4.3.2.1	 Arithmetic Operators......................................... 87
4.3.2.2	 Logic and Boolean Operators........................... 89
4.3.2.3	 Logic Operators Using Direct Bit 

Manipulation...................................................... 90
4.3.2.4	 Assign Operators................................................ 90
4.3.2.5	 Addressing Operators....................................... 92

4.3.3	 Directives............................................................................ 93
4.3.3.1	 General Use Directives...................................... 94
4.3.3.2	 Directives for Relocatable Code....................... 98

4.3.4	 Macroinstructions............................................................ 103
4.3.5	 Organization of a Program in Assembler 

Language........................................................................... 105
4.4	 Available Resources for Programming PIC 

Microcontrollers in Assembler Language..................................110
4.4.1	 The MPASM Assembler...................................................111

4.4.1.1	 Absolute Code Generation.............................. 112
4.4.1.2	 Relocatable Code Generation.......................... 112
4.4.1.3	 Files Used and Generated during the 

Assembling Process......................................... 112
4.4.2	 The Linker MPLINK........................................................115
4.4.3	 Library Manager MPLIB..................................................117



Contents	 vii

	 5	 Parallel Input and Output..................................................................... 121
5.1	 Basic Concepts............................................................................... 121

5.1.1	 Data Transfer Techniques............................................... 122
5.1.2	 Input/Output Techniques............................................... 124

5.2	 Parallel Ports in Medium-End PIC Microcontrollers............... 126
5.2.1	 Port A................................................................................. 129
5.2.2	 Port B.................................................................................. 130
5.2.3	 Port C................................................................................. 131
5.2.4	 Ports D, E, F, and G.......................................................... 131
5.2.5	 Parallel Slave Port (PSP).................................................. 132

5.3	 Connection of Commonly Used Peripherals............................ 134
5.3.1	 Switches and LEDs.......................................................... 134
5.3.2	 Matrix Keypads................................................................ 138
5.3.3	 Seven-Segment LEDs...................................................... 145
5.3.4	 Alphanumeric Liquid-Crystal Displays....................... 148

	 6	 Timers....................................................................................................... 157
6.1	 Timers in PIC Microcontrollers................................................... 157

6.1.1	 Timer0 Module................................................................. 157
6.1.2	 Timer1 Module..................................................................162
6.1.3	 Timer2 Module................................................................. 166

6.2	 The CCP Module........................................................................... 168
6.2.1	 Capture Mode................................................................... 169
6.2.2	 Compare Mode..................................................................174
6.2.3	 PWM Mode........................................................................176

	 7	 Interrupts................................................................................................. 183
7.1	 Basic Concepts............................................................................... 183

7.1.1	 Interrupt Requests and Associated Resources............ 183
7.1.2	 Servicing Interrupt Requests......................................... 185
7.1.3	 Fixed and Vectored Interrupts....................................... 187

7.2	 Interrupts in PIC Microcontrollers............................................. 189
7.2.1	 Interrupt Sources and Associated Registers................ 189
7.2.2	 Interrupt Service Subroutine Structure........................ 194

7.3	 Examples of Interrupt Applications........................................... 198
7.3.1	 Real-Time Clock............................................................... 198
7.3.2	 Synchronization of Events to Real-Time Clock........... 202
7.3.3	 Protection against Hardware Malfunctions................ 205

	 8	 Serial Input and Output........................................................................ 207
8.1	 Basic Concepts............................................................................... 207

8.1.1	 Introduction to Serial Data Transmission.................... 207
8.1.2	 Asynchronous Communication.................................... 209
8.1.3	 Synchronous Communication....................................... 209



viii	 Contents

8.1.4	 Connection between Equipment: RS-232C 
Interface............................................................................. 210

8.1.5	 The I2C Bus........................................................................ 212
8.2	 The USART Serial Port in PIC Microcontrollers........................216

8.2.1	 General Description......................................................... 217
8.2.2	 Asynchronous Mode....................................................... 217
8.2.3	 Synchronous Mode.......................................................... 220
8.2.4	 Communication Speed.................................................... 221

8.3	 The Synchronous Serial Port in PIC Microcontrollers............. 223
8.3.1	 SPI....................................................................................... 223
8.3.2	 I2C Interface...................................................................... 228

	 9	 Analog Input and Output: Signal Acquisition and 
Distribution............................................................................................. 233
9.1	 Structure of a System for Signal Acquisition and 

Distribution.................................................................................... 233
9.1.1	 Basic Functions of Measurement and Control 

Systems.............................................................................. 233
9.1.2	 Dynamic Range................................................................ 236
9.1.3	 Bandwidth......................................................................... 238
9.1.4	 Signal Sampling............................................................... 239
9.1.5	 Architectures for Signal Acquisition: High-Level 

and Low-Level Mutiplexing........................................... 240
9.2	 The Front-End in Data Acquisition Systems............................. 242

9.2.1	 Attenuators....................................................................... 243
9.2.2	 Amplifiers......................................................................... 247
9.2.3	 Input Protections and Filters.......................................... 251
9.2.4	 Analog Multiplexers........................................................ 253
9.2.5	 Anti-Alias Filters.............................................................. 255
9.2.6	 Sample-and-Hold Amplifier........................................... 257
9.2.7	 A/D Converters................................................................ 259

9.3	 The 10-Bit A/D Converter Module in PIC 
Microcontrollers............................................................................ 262
9.3.1	 Architecture of the Conversion Module....................... 262
9.3.2	 A/D Conversion Timing................................................. 266
9.3.3	 A/D Conversion Module Programming...................... 269

9.4	 Calibration...................................................................................... 271
9.5	 Direct Sensor–Microcontroller Interface................................... 273
9.6	 Analog Back-End........................................................................... 276

9.6.1	 D/A Converters................................................................ 276
9.6.2	 Analog Demultiplexing.................................................. 277
9.6.3	 Extrapolation Methods.................................................... 277
9.6.4	 PWM Outputs.................................................................. 278
9.6.5	 Output Protections.......................................................... 280



Contents	 ix

Appendix: Acronyms.................................................................................... 283

Bibliography.................................................................................................... 285

Index................................................................................................................. 287





xi

Preface

Microcontrollers are present in most products of daily use. Teaching 
microcontrollers is difficult because of the wide variety of models, which 
are based on different structures, as well as the large number of their 
possible applications. Despite this diversity, it is possible to find common 
elements in the architecture of most microcontrollers. This book exploits 
these common elements to describe the fundamentals of microcontroller 
design and programming.

This book aims to help the reader learn the architecture and program-
ming of generic microcontrollers using the programmable integrated 
circuit (PIC) family from Microchip as examples. The documentation pro-
vided by the manufacturers of these devices is extensive and it can become 
overwhelming. The topics in this book have been chosen in such a way to 
ensure their continuity, focusing on the clear and accurate explanation of 
these concepts. We have included figures that add value to the book, and we 
have avoided pictures or other graphic material that, while increasing the 
number of pages, do not add any substantial information. Moreover, these 
pictorial materials can be easily found on the manufacturers’ Web sites. To 
help the learner, the first time a new term is introduced, it is in italics.

Each topic is treated using a reader-centered, top-to-bottom approach. 
First, we expose and describe the issues that are common to any micro-
controller. Afterward, these topics are studied in detail for PIC microcon-
trollers. The book has a large number of examples that are taken from 
real-life applications, thus reinforcing the concepts and relating them to 
industry.

This book is structured in nine chapters. Chapter 1 describes the struc-
ture and resources of a generic microcontroller. Chapter 2 describes PIC 
microcontrollers with a special focus on medium-end devices. Chapter 
3 explains the memory organization and structure of microcontrollers 
in general, focusing again on medium-end PICs. Chapter 4 describes the 
assembler language used for programming medium-end PIC microcon-
trollers. Assembler language is the best option for relatively simple appli-
cations in which the microcontroller needs to execute small tasks using 
simple algorithms. The use of assembler language minimizes the amount 
of memory needed, thus allowing the selection of a smaller microcon-
troller. When faced with complex algorithms, the best programming 
option becomes high-level programming language. This requires the use 
of compilers that are not always free.

Chapters 5, 6, 7, and 8 describe how microcontrollers can acquire, process, 
and generate digital signals. These chapters explain available techniques 
to deal with parallel input or output, peripherals, resources for real-time 



xii	 Preface

use, interrupts, and the specific characteristics of serial data interfaces in 
PIC microcontrollers. Chapter 9 describes the acquisition and generation 
of analog signals either using resources inside the chip or by connecting 
peripheral circuits.

The appendix contains a list of acronyms used. The final pages contain 
bibliographical references for those readers who may desire to deepen 
their knowledge of these topics.

This book is aimed toward electronics students and professionals, but it 
will also be useful for those readers interested in learning more about PIC 
microcontrollers and how to use them efficiently.

Fernando E. Valdés Pérez

Ramon Pallàs-Areny



xiii

The Authors

Fernando Eudaldo Valdés Pérez received his BS and MS degrees in elec-
trical engineering from the Universidad de Oriente in Cuba in 1977 and 
2001, respectively. He is an associate professor at the Center of Neuroscience 
Studies and Image and Signal Processing at the Universidad de Oriente. He 
has broad teaching experience, mostly focused on architecture programming 
of microprocessors, microcontrollers, and personal computers, as well as the 
statistical treatment of signals for biomedical applications. He is the main 
author of the textbook Fundamentos Técnicos de Computación (Fundamentals 
of Computing; ISPJAE, La Habana, 1986). His current research is focused 
on the acquisition and processing of cardiovascular signals. He has also 
worked on the design of hemodialysis monitoring systems.

Ramon Pallàs-Areny received the Ingeniero Industrial and Doctor 
Ingeniero Industrial degrees from the Universitat Politècnica de Catalunya 
(UPC), Barcelona, Spain, in 1975 and 1982, respectively. He is a professor 
of electronics engineering at the same university, and teaches courses in 
electronics and medical instrumentation. In 1989 and 1990 he was a visit-
ing Fulbright Scholar, and in 1997 and 1998 he was an Honorary Fellow at 
the University of Wisconsin, Madison. His research includes instrumenta-
tion methods and sensors based on electrical impedance measurements, 
autonomous sensors, sensor interfaces, noninvasive physiological mea-
surements and electromagnetic compatibility in electronic systems. He is 
the author of six books, the leading author of five books, and coauthor of 
two books on instrumentation in Spanish and Catalan. He is also coau-
thor, with John G. Webster, of Sensors and Signal Conditioning, 2nd edition 
(New York, Wiley, 2001), and Analog Signal Processing (New York, Wiley, 
1999); and with Ferran Reverter on Direct Sensor-to-Microcontroller Interface 
Circuits (Barcelona, Marcombo, 2005). Dr. Pallàs-Areny was a recipient, 
with John G. Webster, of the 1991 Andrew R. Chi Prize Paper Award from 
the IEEE/Instrumentation and Measurement Society. In 2000 he received 
the Award for Quality in Teaching granted by the Board of Trustees of 
UPC, and in 2002 the Narcís Monturiol Medal from the Autonomous 
Government of Catalonia.





1

1
Introduction to Microcontrollers

This chapter studies the structure and resources found in typical micro-
controllers. It starts by introducing the concept of a microcontroller and 
exploring the differences between microcontrollers and microprocessors. It 
continues with the description of the resources that are available in micro-
controllers, focusing again on how they differ from the resources available 
in microprocessors. The chapter then describes the von Neumann and 
Harvard architectures as well as how the reduced instruction set com-
puter (RISC) and complex instruction set computer (CISC) architectures 
differ in their instruction sets. It finishes by describing the most common 
microcontrollers and listing their manufacturers.

1.1 � Microprocessors and Microcontrollers: Characterization

Figure 1.1 shows the block diagram of a generic microcomputer. It consists 
of three fundamental blocks: central processing unit (CPU), memory, and 
input/output (I/O) system. These blocks are interconnected by groups 
of electrical lines called buses. The buses that transport memory or I/O 
addresses are called address buses; the buses that transport data or instruc-
tions are called data buses; and the buses that transport control signals are 
called control buses.

The CPU is the brain of the microcomputer, being under control of the 
program stored in memory. The tasks of the CPU are to fetch the instruc-
tions stored in memory, interpret those instructions, and execute them. 
The CPU also includes the circuitry necessary to perform arithmetic and 
logic operations with binary data. This special circuitry is called the arith-
metic and logic unit (ALU).

In a microcomputer, the CPU is its microprocessor, which is the integrated 
circuit that carries out the operations described above. A microcontroller 
can be considered as a microcomputer built on a single integrated circuit 
or chip. Historically, microcontrollers appeared after microprocessors and 
followed independent paths. Microprocessors are mainly found in per-
sonal computers and workstations, as these require strong computational 
power, and the ability to manage large sets of data and instructions at a 
high speed. A very important parameter for microprocessors is the size of 



2	 Microcontrollers: Fundamentals and Applications with PIC

their internal registers (8, 16, 32, or 64 bits), as this determines the number 
of bits that can be processed simultaneously.

On the other hand, microcontrollers are used in a large variety of 
applications. They can be found in the automotive industry, communica-
tion systems, electronic instrumentation, hospital equipment, industrial 
equipment and applications, household appliances, toys, and so forth. 
Microcontrollers have been designed to be used in applications in which 
they have to carry out a small number of tasks at the lowest possible eco-
nomic cost. They do this by executing a program permanently stored in 
their memory, whereas the input/output ports of the microcontroller are 
used to interact with the outside world. Therefore, the microcontroller 
becomes part of the application; it is a controller embedded in the system. 
Complex applications can use several microcontrollers, each one of them 
focusing on a small group of tasks.

The following generic requirements are important for microcontrollers 
and designs using microcontrollers:

	 1.	 Input/output resources. As opposed to microprocessors in which 
the emphasis is on computational power, microcontrollers put 
their emphasis on their input/output resources, such as the abil-
ity to handle interrupts, analog signals, number of different input 
and output lines, and so forth.

	 2.	Optimization of space. It is important to use the smallest possible 
footprint at a reasonable cost. Given that the number of pins in a 
chip depends on its packaging, the footprint can be optimized by 
having one pin able to perform several different functions.

Address Bus (16, 32 bits)

CPU Memory Peripherals

Control bus

Data Bus
(8, 16 or 32 bits)

Input
&

output

Figure 1.1
Generic block diagram of a microcomputer. Here, the CPU is the microprocessor.



Introduction to Microcontrollers	 3

	 3.	Using the most appropriate microcontroller for a given applica-
tion. Microcontroller manufacturers have developed families 
of devices with the same instruction set but different hardware 
aspects, such as memory size, input/output devices, and so forth. 
This allows the designer to select the most appropriate device 
from a given family.

	 4.	Protection against failure. It is critical for safety to guarantee that 
the microcontroller is executing the correct program. If for any 
reason the program goes astray, the situation has to be immedi-
ately corrected. Microcontrollers have a watchdog timer (WDT) to 
ensure that the program is being executed correctly. Watchdog 
timers do not exist in personal computers.

	 5.	Low power consumption. Because batteries power many appli-
cations using microcontrollers, it is important to ensure the low 
power consumption of microcontrollers. Furthermore, the energy 
used when the microcontroller is not doing anything, for example, 
when it is waiting for an action from the user like a keyboard input, 
needs to be kept to a minimum. To do this, the microcontroller is 
set in sleeping state until it resumes the execution of the program.

	 6.	Protection of programs against copies. The program stored in 
memory needs to be protected against unauthorized reading. To 
do this, the microcontrollers incorporate protection mechanisms 
against copying.

1.2  Components of a Microcontroller

Microcontrollers combine the fundamental resources available in a micro-
computer such as the CPU, memory, and I/O resources in a single chip. 
Figure 1.2 shows the block diagram for a generic microcontroller.

Microcontrollers have an oscillator to generate the signal necessary to 
synchronize all internal operations. Although this can be a basic RC (resis-
tance capacitor) oscillator, a quartz crystal (XTAL) is normally used due 
to its high frequency stability. The frequency of the oscillator has a direct 
influence on the speed at which program instructions are executed.

Similar to microcomputers, the CPU is the brain of the microcontroller. 
The CPU fetches the program instructions from their locations in memory 
one by one, interprets or decodes them, and executes them. The CPU also 
includes the ALU circuits for binary arithmetic and logic operations.

The microcontroller’s CPU has different registers. Some of these reg-
isters are intended for general use, whereas others have a specific pur-



4	 Microcontrollers: Fundamentals and Applications with PIC

pose. Specific purpose registers include: instruction register, accumulator, 
status register, program counter, data address register, and stack pointer.

The instruction register (IR) stores the instruction that the CPU is execut-
ing. The programmer does not normally have access to the IR.

The accumulator (ACC) is a register associated with the arithmetic 
and logic operations that the ALU is carrying out. When executing any 
operation, one of the data needs to be in the ACC. The resulting value 
is also stored in the ACC. PIC microcontrollers do not have the ACC 
register. Instead, they have a working (W) register that is very similar 
to the ACC.

The status register (STATUS) contains the bits that show different char-
acteristics related to the operations carried out by the ALU. These can be 
the sign of the resulting value (positive vs. negative), a flag to notify if the 
resulting value is zero, carry over, parity bits, and so forth.

The program counter (PC) is the CPU register where addresses of instruc-
tions are stored. Every time that the CPU looks for an instruction in the 
memory, the PC is increased, pointing to the following instruction. In an 
instant of time, the PC contains the address of the instruction that will be 
executed next. The control transfer instructions modify the value stored 
in the PC.

The data address register (DAR) stores data addresses from memory. This 
register plays a major role in indirect data addressing. Different types of 
microcontrollers use different specific names for the DAR. For example, 
PIC microcontrollers call this register the file select register (FSR).

The stack pointer (SP) stores data addresses in the stack. The stack and 
the SP register are studied in further detail in Chapter 4. PIC microcon-
trollers do not have an SP register.

The microcontroller memory stores both program instructions and data. 
Any microcontroller has two types of memory: random-access memory 
(RAM) and read-only memory (ROM). RAM can be read and written. 

Oscillator

XTAL

Timers Interrupt
control

Address, data and control buses

Watchdog

C
P
U

ROM memory RAM memory

Parallel
I/O

Serial
I/O

Analog
I/O

Figure 1.2
Basic block diagram of a microcontroller.



Introduction to Microcontrollers	 5

RAM is volatile memory, meaning that its data is lost when it is not pow-
ered. On the other hand, although ROM can only be read, it is non-vola-
tile. The different types of technologies used for ROM such as EPROM 
(erasable programmable read-only memory), EEPROM (electrical eras-
able programmable read-only memory), OTP (one-time programmable), 
and FLASH  are described in detail in Chapter 3. Both RAM and ROM 
are “random access” memories, meaning that the time to access specific 
data does not depend on its stored location. This is opposed to sequential 
access memories in which the time needed to access a specific memory 
cell depends on the location of the last accessed cell.

ROM is used to permanently store the program for the microcontroller, 
whereas RAM is used to temporarily store the data that will be manipu-
lated by the program. An increasing number of microcontrollers use non-
volatile memory such as EEPROM to store some of the data that is changed 
only sporadically. The size of ROM is larger than the size of RAM for two 
main reasons: First, most applications require programs that manipulate a 
relatively small number of data. Second, RAM has a larger footprint com-
pared to ROM, and therefore it is more expensive than ROM.

Being the vehicle to communicate with the outside world, the I/O 
resources are very important in microcontrollers. I/O resources consist 
of the serial and parallel ports, timers, and interruption managers. Some 
microcontrollers also incorporate analog input and output lines associated 
with analog-to-digital (A/D) and digital-to-analog (D/A) converters. The 
resources needed to ensure the regular operation of the microcontrollers 
such as the watchdog are also considered part of the I/O resources.

Parallel ports are normally structured in groups of up to eight lines of 
digital inputs and outputs. It is normally possible to manipulate each one 
of these lines individually. Serial ports can be of different technologies 
such as RS-232C (Recommended Standard 232, Revision C), I2C (inter-
integrated circuit), USB (universal serial bus), and Ethernet. In general, a 
microcontroller will have the largest possible number of I/O resources for 
the number of available pins in its integrated circuit package. To increase 
the performance, one physical pin can be connected to several internal 
blocks, and therefore that pin may carry out different functions depend-
ing on how the microcontroller has been configured.

1.2.1  The Watchdog

The watchdog timer (WDT) is a resource that can be found in most micro-
controllers. As shown in Figure 1.3, the WDT consists of an oscillator and a 
binary counter of N bits. Although the oscillator can be the same oscillator 
used by the microcontroller, it is preferable to use an independent oscillator. 
The output of the counter is connected to the reset input for the microcon-
troller. The counting process can never be stopped, although the program 
being executed can periodically reset the counter to its initial value.



6	 Microcontrollers: Fundamentals and Applications with PIC

Every pulse at the output of the oscillator becomes an input to the coun-
ter. When the counter reaches its maximum value, the output of the coun-
ter becomes active and gives a reset signal to the microcontroller. The goal 
of the designer is to avoid having the counter in the WDT reach its maxi-
mum value. Because, once started, the WDT cannot be stopped; the only 
way to avoid the reset signal is by setting the counter back to zero from 
the program that is being executed. This has to happen periodically and 
faster or the WDT counter will reach its maximum value. When the pro-
gram is executed correctly, the WDT counter will never reach the maxi-
mum value. However, if the program becomes lost and stops executing 
the program, the WDT counter will reach its maximum value, will send 
the reset signal to the microcontroller, and the program will start execut-
ing from the beginning again. Therefore, the WDT is a critical element 
in a microcontroller, as it guarantees that the program will be executed 
continuously.

1.2.2 R eset Signal

Reset is an action that initializes microprocessors and microcontrollers. 
This initialization happens when a specific signal (called the reset signal) is 
applied to a specific pin (called the reset pin). The reset signal sets the pro-
gram counter (PC) to a predetermined value, for example, PC = 0, making 
the microprocessor or microcontroller start executing the program com-
mands from that specific memory address.

In a microcomputer, the reset signal can be applied manually (for exam-
ple, when pressing a reset push button) or when the microcomputer boots 
up (power-on reset). Figure 1.4 shows the schematic of a circuit used to gen-
erate the reset signal either manually or through power-on. In the figure, 
VRESET is the voltage applied to the reset pin, and VTH is the threshold volt-
age for the pin. If VRESET < VTH, the device understands it as a logic value 
of 0 (RESET = 0). If VRESET > VTH, the device understands it as a logic value 
of 1 (RESET = 1). As shown in the schematic, the reset action occurs when 
RESET = 0.

Oscillator

Clear from
program

N-pulse
counter

To internal reset
circuitry of

microcontroller

Figure 1.3
Basic watchdog diagram. Its output is connected to the internal circuitry to generate the 
reset signal.



Introduction to Microcontrollers	 7

The resistance (R) and the capacitor (C) make up a simple RC circuit 
with a time constant τ = RC. In power-on, the voltage supply charges C 
through R. If τ is large enough, VRESET is lower than VTH during the time 
it takes for the voltage supply to become stable for the microcontroller to 
work correctly.

In addition to these two voluntary reset actions, the microcontroller 
may be unwillingly reset, for example, due to problems with its power 
supply (power-glitch reset, brown-out reset) or due to an action from the 
WDT. Power-glitch reset occurs when the applied voltage momentarily 
falls below a certain value, so the capacitor discharges to the point that 
VRESET < VTH. The reset originated by the WDT occurs when the WDT has 
not been refreshed and the output of the counter becomes active. This 
normally happens when the microcontroller has stopped executing the 
correct program in memory. It is very important for the microcontroller to 
generate a reset signal in this case to guarantee that the microcontroller 
will start executing instructions from a known memory address instead 
of reaching an unknown memory location that could damage the system. 
Some microcontrollers utilize specific bits in a register to signal that a 
reset action has taken place. This allows us to further investigate the rea-
sons as to why the reset took place in order to take corrective actions.

1.2.3  Low Consumption

Because batteries power most applications using microcontrollers, power 
consumption has become a critical parameter. Power consumption in an 
integrated circuit depends on three factors: the technology used in the 
chip, the frequency of its oscillator, and the value of its voltage supply. 
CMOS (complementary metal-oxide semiconductor) is the preferred 

R

C

VRESET
VRESETVSS

VDD

VDD

VDD nominal
VDD nominal

Vthr

–10%

RESET

(a) (b)

RESET = “0”

RESET = “1”

Volts

Time

MicrocontrollerManual
reset

+5 V

Figure 1.4
Manual reset and power-on reset. (a) Typical reset circuit in a microcontroller. (b) Time 
evolution of voltages involved in reset signal.



8	 Microcontrollers: Fundamentals and Applications with PIC

technology for manufacturing microcontrollers due its low power needs. 
In static conditions only a very small leakage current flows through the 
gates. Its power consumption is only significant when switching logic 
states. Increasing the frequency of the oscillator increases the number of 
switching actions, and therefore its power consumption also increases. 
However, it is important to remember that in many applications the micro-
controller is just waiting for an external event, such as a key being pressed, 
or an interrupt, before carrying out a task. Once finished, it returns to the 
waiting state. To further decrease its power consumption, it is a good idea 
to paralyze the microcontroller either totally or partially while it is wait-
ing for an external event.

The best method to paralyze the microcontroller is to stop its main oscil-
lator. This will force the main systems to be in a static mode waiting for an 
external action to start it again. When this happens, the microcontroller 
is said to be in idle state, power down, or sleep mode. Different microcon-
trollers have different methods to enter this low-power state. Some micro-
controllers only need to modify a determined bit from a specific register, 
whereas other microcontrollers have a dedicated instruction for this pur-
pose. The only way to leave this low-power mode is by means of an exter-
nal interrupt or by a reset.

Example 1.1

8051 microcontrollers have two low-power modes: idle and power down. Any 
of these two modes can be entered by setting some specific bits of the power 
control (PCON) registry to 1. In idle mode, the CPU is paralyzed although 
the main oscillator and the other microcontroller blocks continue working. 
The microcontroller can leave this mode by means of an external interrupt 
or a reset. In power-down mode, the oscillator, and therefore the complete 
microcontroller, become paralyzed. It can only leave the power-down mode 
by means of a reset.

1.2.4  Protection against Copying

It is important to ensure the safety and protection of the information perma-
nently stored in the microcontroller’s memory and to avoid the program to 
be read or copied from memory once the device has been programmed.

Microcontrollers have resources to protect programs stored in their 
memory. This protection is normally optional; the programmer has to 
activate it. Some microcontrollers, like the programmable integrated cir-
cuit (PIC) family, can also be configured to prohibit reading of their mem-
ory once they have been programmed. Some other microcontrollers have 
open-memory architecture, that is, they allow the use of memory external 
to the device. In this case, the protection is done by encrypting the infor-



Introduction to Microcontrollers	 9

mation exchanged by the microcontroller and the external memory. This 
is typical for the 8051 family of microcontrollers.

Example 1.2

Program protection in 8051 microcontrollers. 8051 microcontrollers have 
open-memory architectures, allowing the use of external memory. These 
microcontrollers have two levels of program protection:

Level 1: The stored information is encrypted with an encryption word that can 
vary between 16 and 64 bits. The encryption is carried out using an XNOR 
operation between the encryption word and the program in memory. When 
the CPU reads the content in memory, it carries out another XNOR operation 
with one of the encryption bits, thus recovering the original bit. This makes it 
practically impossible to know the real information stored in memory if the 
encryption word is unknown.

Level 2: A special registry in the microcontroller has security bits that can be 
programmed to limit total or partial access to the internal program memory.

1.3  Von Neumann and Harvard Architectures

The memory of a microcomputer, microprocessor, or microcontroller stores 
both data and instructions. Instructions need to move sequentially through 
the CPU to be decoded and executed. Data can be read from memory by the 
CPU or written in memory by the CPU. Therefore, the way that memory 
is organized and the way it communicates with the CPU determines the 
performance of the device. The two generic hardware models for memory 
structure are called Von Neumann and Harvard architectures.

Von Neumann architecture was proposed by the mathematician John 
von Neumann when he designed the Electronic Numerical Integrator and 
Calculator (ENIAC) at the University of Pennsylvania during World War 
II. He had the seminal idea of developing a stored-program computer. 
Harvard architecture was proposed by Howard Aiken when he devel-
oped the computers known as Mark I, II, III, and IV at Harvard University. 
These were the first computers to utilize different memories to store data 
and instructions separately, thus being a much different approach than 
the stored-program computer.

Figure  1.5 shows these two models. The von Neumann architecture 
uses a single memory to store instructions and data. This means that one 
unique address bus can access program instructions and data. Also, a 
unique data bus can transmit program instructions and data. The CPU 



10	 Microcontrollers: Fundamentals and Applications with PIC

sends the same control signal to read data or to read an instruction. There 
are no independent data or instructions control signals. Although ROM is 
used for instruction storage and RAM is used for data storage, the CPU is 
not concerned with this distinction and treats them the same way. From 
the CPU point of view, both ROM and RAM make up a single memory 
block to which the CPU sends control signals for addresses and data.

Harvard architecture uses different memories to store instructions and 
data. The program memory has its own address bus (instruction address 
bus), its own data bus (more properly called an instruction bus), and its own 
control bus. Data memory has its own address bus, data bus, and control  
bus independent from the instruction buses. The program memory can 
only be read when data memory can be read and written.

The von Neumann architecture uses fewer lines than the Harvard 
architecture, thus making a much simpler connection between CPU and 
memory. However, this structure does not allow simultaneous handling 
of data and instructions because there is only one bus. On the other hand, 
because it has different buses, Harvard architecture allows the handling 
of data and instructions simultaneously. This gives Harvard architecture 
an advantage in the speed of execution of programs.

CPU Program and data
memory

DATA B
CNTR B

CPUProgram
memory

Data
memory

DATA BINST B
I-CNTR B D-CNTR B

(a)

(b)

I-ADDR B D-ADDR B

ADDR B

Figure 1.5
(a) von Neumann and (b) Harvard architectures. The von Neumann architecture uses a 
single memory connected to the CPU by using a single address bus (ADDR B), a single 
data bus (DATA B), and a single control bus (CNTR B). Harvard architecture uses different 
memories for data and instructions connected to the CPU by an instruction address bus 
(I-ADDR B), a data address bus (D-ADDR B), an instruction bus (INST B), a data bus (DATA 
B), an instruction control bus (I-CNTR B), and a data control bus (D-CNTR B).



Introduction to Microcontrollers	 11

In a microcomputer, the CPU is the microprocessor chip. Because it 
combines data and program in a single memory, a CPU implemented 
with the von Neumann architecture will need fewer pins and therefore 
will reduce the size of the CPU. For this reason, almost all microcomput-
ers using a microprocessor have been developed using the von Neumann 
architecture. However, the situation is different in a microcontroller. In 
a microcontroller, the system components are located inside the same 
integrated chip and therefore there is no need to minimize pins. For this 
reason, Harvard architecture has been the chosen architecture for most 
microcontrollers, including the PIC family.

1.4  CISC and RISC Architectures

Complex set instruction computer (CISC) and reduced instruction set computer 
(RISC) are two different computer models classified according to their set 
of instructions. A CISC has a complex instruction set, whereas a RISC has 
a reduced instruction set.

When microprocessors and microcontrollers first appeared, the gen-
eral trend was to give them the most powerful instruction set possible. 
Therefore, the CISC architecture became the prevalent mode. As time 
went on, the instructions increased in complexity to the point that the  
instruction set was a combination of very simple instructions (moving 
data from memory to the accumulator, for example), and very complex 
instructions, such as moving a chain of data between memory locations. 
The length of the instructions was different, the addressing mode became 
more complex, and in turn all this increased the complexity of the CPU 
and its size in the chip.

The CPU in RISC architectures has a short set of simple instructions. 
Each instruction carries out a very simple task (for example, moving data 
between CPU and memory), but it can be done very fast. Also, all the 
instructions have the same length. There are few addressing modes and 
all of them can be applied to any cell. This means that the CPU will be 
less complex, resulting in it being possible to increase the frequency of the 
oscillator in order to increase the speed at which operations are executed. 
Furthermore, as the CPU contains fewer transistors, they are less expen-
sive to design and manufacture. CISC architecture has been the chosen 
mode for microprocessors and microcontrollers designed since the 1980s. 
PIC microcontrollers have RISC architecture.



12	 Microcontrollers: Fundamentals and Applications with PIC

1.5  Manufacturers of Microcontrollers and Microprocessors

Different microcontrollers that have the same core, that is, that share the 
same CPU and execute the same instruction set, are called a family of micro-
controllers. Different devices within a family have the same core, but they 
differ in their I/O capabilities and their memory size. For example, all 
the microcontrollers in the 8051 family (MCS51) have a similar CPU and 
execute the same set of instructions. However, different family members 
have different numbers and types of I/O ports and also different memory 
types and sizes.

Microprocessors and microcontrollers are manufactured as stand-alone 
devices—chips that only contain the microprocessor or microcontroller. 
However, they can also be an embedded-processor core within a large den-
sity integration chip that the user will ultimately configure for a particular 
use. Programmable logic devices (PLD) such as field programmable gate 
arrays (FPGAs) are an example of such application. PLDs and FPGAs are 
large integration density circuits in which a user can select their function 
by choosing the appropriate interconnection elements. One of these ele-
ments may be the core of a microprocessor or a microcontroller that the 
user can connect to part of the memory and the chosen I/O devices. This 
allows the development of a custom microcontroller for a specific applica-
tion, while having the advantage that this custom device is compatible with 
a standard device such as a PIC or 8051 as they both share the same core.

Several industries manufacture microcontrollers and microprocessors 
in any of the methods discussed earlier. The following is a list of micro-
controller and microprocessor manufacturers, as well as of other devices 
that use a similar common core.

Actel. FPGA with 8051 and ARM7 cores.•	
Advanced Micro Devices (AMD). Microprocessors compatible •	
with xx86.
Altera. FPGA with Nios II core.•	
Analog Devices. Architectures for digital signal processing based •	
on 8052, ARM7, and other processors.
Applied Micro Circuits Corp. (AMCC). Architectures based on •	
the PowerPC microprocessor.
ARC International. Architectures based on ARC 600, ARC 700, •	
etc., microprocessors.
ARM. Architectures based on ARM7, ARM9, ARM10, etc., micro-•	
processor cores.
Atmel. Architectures based on Marc 4, AVR, 8051, ARM7, ARM9, •	
ARM11, PowerPC, and SPARC.



Introduction to Microcontrollers	 13

Broadcom. Processors for communications and data networks •	
with MIPS architecture.
Cambridge Consultants. Architectures based on XAP1, XAP2, •	
and XAP3 core processors.
Cavium Networks. Architectures based on MIPS.•	
Cirrus Logic. Architectures based on ARM.•	
Cradle Technologies. Digital signal processors: CT3400 and CT3600.•	
Cyan Technology. Microcontroller eCOG1k.•	
Cybernetic Micro Systems. ASICs with microcontroller P-51.•	
Cypress Microsystems. Devices with PSoC (Programmable •	
System-on-Chip) architecture.
Dallas Semiconductor. 8051-compatible microcontrollers.•	
EM Microelectronics. Very low consumption EM6812.•	
Freescale Semiconductor (from Motorola). Microcontrollers •	
68HC05, 68HC08, 68HC11, 68HC12, and 68HC16. DSPs. Processors 
ColdFire and PowerQuicc with PowerPC core.
Fujitsu Microelectronics America. Microcontrollers FR80, •	
MB9140x, and F2MC-8FX.
Goal Semiconductor. Architectures based on 8051.•	
Holtek Semiconductor. Microcontroller HT8.•	
Hyperstone. Digital Signal Processors E1-32XSR/XSRU, HyNet32S, •	
etc.
Infineon Technologies (formerly Siemens). Microcontrollers C500, •	
C800, C166, TriCore, etc.
Infrant Technologies. Microcontrollers for data networks.•	
Integrated Device Technology (IDT). Data Communications pro-•	
cessors based on MIPS architecture.
Intel. Microcontrollers from families MCS51, MCS151, MCS251, •	
MCS96, MCS296, etc. Microprocessors xx86, IXP4xx, etc.
Microchip Technology. Microcontrollers PIC (PICmicro) and digi-•	
tal signal controllers dsPIC.
MIPS Technologies. Processors MIPS (Microprocessor without •	
Interlocked Pipeline Stages).
National Semiconductor. Microcontrollers COP8 and CR16, and •	
microprocessors NS32000.
NEC Electronics America. Microcontrollers 78K0, V850, and others.•	
NetSilicon. Processors based on ARM7 and ARM9 cores.•	
NXP Semiconductors (formerly Philips Semiconductors). •	
Microcontrollers with 8051, ARM7, and ARM9 cores.



14	 Microcontrollers: Fundamentals and Applications with PIC

Oki Semiconductor. Microcontrollers with ARM core.•	
PMC-Sierra. MIPS-based processors.•	
Rabbit Semiconductor. Processors Rabbit 2000 and 3000.•	
Renesas Technology (formerly Hitachi). Microcontrollers R8, H8, •	
and others.
Sharp Microelectronics. Microcontrollers BlueStreak with ARM7 •	
and ARM9 core.
Silicon Laboratories. Microcontrollers with 8051 core.•	
Silicon Storage Technology. Microcontrollers with 8051 core.•	
STMicroelectronics. Microcontrollers with 8051 and ARM7 cores.•	
Texas Instruments (TI). Digital signal processors TMS370 and •	
TMS470. Microcontrollers MSP430.
Toshiba America Electronic Components. Microcontrollers CISC •	
and RISC.
Ubicom. Microcontrollers SX, IP2000, and IP3000.•	
Xemics. Microcontrollers with CoolRISC core.•	
Xilinx. FPGA with PowerPC cores.•	
ZiLOG. 8-bit microcontrollers with Z8 and Z80 architectures.•	



15

2
PIC Microcontrollers

This chapter provides an overview of programmable integrated circuit 
(PIC) microcontrollers. The chapter starts by describing the general archi-
tecture common to the different PIC families, with a special emphasis 
on several elements based on the working register. It continues with the 
description of how instructions are executed, the different types of oscil-
lators, the low-power consumption mode, and the watchdog timer. The 
chapter finishes by discussing the different types of PIC microcontrollers 
available on the market.

2.1  Main Characteristics of PIC Microcontrollers

All PIC microcontrollers are based on the Harvard architecture as shown 
in figure 1.5b (chapter 1). This architecture is characterized by having dif-
ferent memories for program and for data. As is common to most micro-
controllers, the size of the program memory is larger than the size of data 
memory. The program memory is organized in words of 12, 14, or 16 bits; 
the data memory is based on registers of 8 bits. The access to the diverse 
I/O devices is carried out through some registers in the data memory 
called special function registers (SFRs). Several PIC microcontrollers also 
have some additional EEPROM to store data in a non-volatile mode.

All PIC microcontrollers are RISC microcontrollers, thus having a 
relatively reduced number of instructions: between 33 and 77. All the 
instructions in a PIC family have the same size: 12, 14, or 16 bits. From 
the programmer’s point of view, PIC microcontrollers have a working 
(W) register and multiple data memory registers. When carrying out 
arithmetic or logic operations, one of the operands must be in the W 
register. The resulting value will be placed either in the W register or in 
any other register in the data memory. Data transfer occurs between the 
W register and any other register in the data memory, although some 
high-end PICs allow data transfer directly between two data memory 
registers. PICs also have instructions to access any bit in any data mem-
ory register.

All PIC microcontrollers use pipelining to execute instructions. This 
pipelining consists of two steps, making up a single instruction cycle. 



16	 Microcontrollers: Fundamentals and Applications with PIC

All instructions, with the exception of control transfer instructions that 
use two instruction cycles, are executed in a single instruction cycle. An 
instruction cycle lasts four pulses from the main oscillator.

Another special characteristic of PIC microcontrollers is the implemen-
tation of the stack. Here, the stack is not part of the data memory but it 
has its own independent space, and therefore a finite size. The size of the 
stack depends on each PIC model. PIC microcontrollers do not have a stack 
pointer (SP), as is common to most microprocessors and microcontrollers.

PIC microcontrollers have a large variety of I/O devices. They have 
8-bit parallel ports, timers, synchronous and asynchronous serial ports, 
A/D and D/A converters, pulse width modulators, and so forth. The I/O 
devices generate interrupt requests from the microcontroller. The lower 
end PICs, however, do not have interrupt resources.

All PIC microcontrollers have a counter that works as a watchdog timer. 
This timer can be configured with specific bits when the microcontroller 
is being programmed. Other configuration bits are used to protect the 
program memory against unauthorized copies.

Many PIC microcontrollers can be programmed in the same circuit for 
their application with a technique known as in-circuit serial programming 
(ICSP). ICSP uses a small number of lines and therefore it is advantageous.

2.1.1 � The Arithmetic and Logic Unit (ALU) and the 
Working Register in PIC Microcontrollers

The arithmetic and logic unit (ALU) is one of the fundamental compo-
nents in a microcontroller. The ALU executes the arithmetic and logic 
operations available in the instruction set. There is one register associated 
with the ALU that temporarily stores at least one operand involved in the 
operation, as well as the result of that operation. The ALU also has bits to 
indicate specific characteristics of the resulting value, such as if the result 
is zero, the sign of the resulting value, or the existence of carry over. These 
bits are normally part of the STATUS register.

In most microprocessors and microcontrollers the register associated 
with the ALU is called the accumulator (ACC). In PIC microcontrollers the 
register associated with the ALU is called the W register. The W register 
carries out tasks similar to the ACC, but, as shown in figure 2.1, it is posi-
tioned in a different place. Therefore, the ACC and the W register do not 
operate in the same way.

In traditional architectures, the ACC is placed at the output of the ALU, 
so it always stores the result of an arithmetic or logic operation. In PIC 
microcontrollers, however, the result of an operation can either be placed in 
the W register or in any register in the data memory. This gives PIC micro-
controllers an increased amount of computing flexibility and power.



PIC Microcontrollers	 17

2.1.2  Machine Cycles and Execution of Instructions

Like any microcontroller, PIC microcontrollers have a main oscillator to 
synchronize its internal operations. The pulses from this oscillator (OSC1) 
are internally divided to generate four signals called Q1, Q2, Q3, and Q4. 
These signals synchronize all the operations internal to the microcon-
troller. A machine cycle (MC) is defined as four pulses from the main 
oscillator (OSC1). Figure 2.2 shows the relationship between OSC1; the Q1, 
Q2, Q3, and Q4 signals; and the machine cycle.

During the time Q1 is active, in any given machine cycle, the program 
counter is increased, pointing toward the next instruction to be fetched. 
This instruction will be fetched during Q4. At the same time, the previ-
ous instruction is being executed during the whole machine cycle, that is, 
from Q1 to Q4.

There are three phases in the execution of a program instruction: fetch, 
decode, and execution. During the fetching phase, the microcontroller 
reads the instruction in the program memory and brings it to the CPU. 
During the decoding phase, the CPU determines the operation to carry 
out as described by the instruction. Finally, the operation is executed dur-
ing the execution phase.

Executing an instruction takes two machine cycles. The first cycle fetches 
the instruction from the program memory. The second cycle decodes and 
executes the instruction. However, due to the pipelining of operations, the 
second machine cycle overlaps with the first machine cycle from the next 

Data Bus

Data Bus

Data
memory Data

memory

W

STATUS
STATUS

ACC

(a) (b)

ALU
ALU

Figure 2.1 
Relationship between the ALU, working (W) register, and data memory. (a) Configuration 
used in most microprocessors. (b) Configuration used in PIC microcontrollers. They differ 
in the location of the W register. This register is called the accumulator (ACC) in micropro-
cessor configurations and the W register in PIC microcontrollers.



18	 Microcontrollers: Fundamentals and Applications with PIC

instruction as shown in Figure 2.2. Therefore, from a practical point of view 
it is possible to say that instructions are executed in one machine cycle.

2.1.3  Pipelining for Instruction Execution

Pipelining is a technique used to overlap two or more instructions as they 
are being executed. This introduces some parallelism in the execution of 
instructions, thus reducing the required execution time. The programmer 
does not need to worry about pipelining, as it is incorporated into the 
design of the microcontroller.

Pipelining is similar to a production line in a factory. There, the prod-
uct is moved between stations, each one of them doing a specific task. In a 
production line with n steps, there are always n products in the process of 
being manufactured. Let’s assume Ts is the time that the product spends in 
each station. The total production time will then be n × Ts. But as there is a 
product coming out from the production line at any Ts, time units, the aver-
age time for product manufacturing is then Ts. In an n-stage pipeline, each 
instruction spends a time equal to TMC for any stage, with TMC being the 
time length of a machine cycle. Therefore, the time needed to move through 
all the stages is n × TMC. However, because instructions exit the pipeline 
every TMC seconds, it is possible to assume that the average time to execute 
any instruction is TMC. Because some instructions, such as control trans-
fer instructions, require additional machine cycles, the average instruction 
execution time for these instructions is slightly longer than TMC.

OSC 1

Q1

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Q2

Q3

Q4

PC PC PC+1 PC+2

TMC1 TMC2 TMC3

Pipeline Fetch Instruction (PC) Fetch Instruction (PC+1) Fetch Instruction (PC+2)
Execute Inst (PC–1) Execute Inst (PC) Execute Inst (PC+1)

Figure 2.2 
Clock signals in PIC microcontrollers. OSC1 is the main oscillator from which the internal 
signals Q1, Q2, Q3, and Q4 are derived. These signals synchronize fetching, decode, and 
execute of instructions. TMC is the duration of a machine cycle. It uses four OSC1 pulses.



PIC Microcontrollers	 19

Figure 2.3 shows how the PIC microcontroller executes instructions in 
a two-stage pipeline. Each instruction requires two stages. The first stage 
is the fetching stage that requires a machine cycle. The second stage, in 
which the instruction is decoded and executed, requires another machine 
cycle. Therefore, during each machine cycle, the microcontroller fetches 
one instruction and executes the previous instruction. Every machine 
cycle period results in an instruction being executed, with the previ-
ously mentioned exception of control transfer instructions as described 
in Example 2.1:

Example 2.1

Figure  2.4 shows the operation of a two-stage pipeline when executing a 
program segment that includes a control transfer instruction. During the first 
machine cycle (MC1), the microcontroller fetches instruction I1 while execut-
ing I0 (not shown in the figure). During MC2, it fetches I2 while executing 
I1. During MC3, the microcontroller fetches I3, a control transfer instruction, 
while it is executing I2. During MC4, it fetches I4 while executing I3. I3 is a 
subroutine call that starts at instruction I10. It puts the current program counter 
in the stack and points the program counter toward instruction I10 that will be 
executed at the next MC. At MC5, the microprocessor fetches I10, but I4 that 
was already in the pipeline must not be executed. I4 is taken away from the 
pipeline and replaced by a no-operation (nop) instruction. At MC6 the next 
instruction (I11, not shown in the figure) is fetched while I10 is executed. It is 
then possible to see how the control transfer instruction needs two machine 
cycles.

2.1.4  Oscillators

The main oscillator in PIC microcontrollers can be a crystal oscillator, an 
RC oscillator, or an external clock. Some devices also have an internal RC 
oscillator at 4 MHz. Increasing the oscillator frequency shortens the length 
of the machine cycles and therefore the time needed for executing instruc-
tions, but also increases power consumption. The type of oscillator can be 

Program Step 1
(Fetch)

Step 2
(Execution) 1 Instruction per MC

1 MC1 MC

Figure 2.3 
Two-step pipelining. The first step fetches the instruction that will be executed in the sec-
ond step. Each step lasts one machine cycle (MC). The pipeline has two different instruc-
tions in the two steps. Each instruction stays in the pipeline for 2 MC, therefore there is one 
instruction leaving the pipeline each MC.



20	 Microcontrollers: Fundamentals and Applications with PIC

selected by the configuration bits. These also select specific modes of opera-
tion for crystal or ceramic oscillators: LP, XT, and HS. The LP mode selects 
oscillator frequencies between 32 kHz and 200 kHz, and is used in very low 
power-consumption applications. The XT mode selects oscillator frequencies 
between 100 kHz and 4 MHz. The HS mode selects oscillator frequencies 
between 8 MHz and 20 MHz. Figure 2.5 shows a general configuration for a 
crystal oscillator.

The RC oscillator is the least expensive option for the main oscillator in 
the microcontroller. This can only be used when frequency accuracy and 
stability are not critical. Figure 2.6 shows how this oscillator is implemented 
in a medium-end PIC. Although manufacturers do not have an equation 
to determine the values of CEXT or REXT, they provide graphs that relate the 
value of the oscillation frequency with VDD, CEXT, and REXT at 25ºC.

I1

I2

I3

I1

I2

I3

nop

I4

I10

I0 0

TMC

2TMC

3TMC

4TMC

5TMC

Time

I10I11

Step 1
(Fetch)

Step 2
(Execution)Program

  I1: movlw 55h

  I2: movwf 20h

  I3: call I10

I10: addwf PCL, f

  I4: . . .
  . . .

Figure 2.4 
Example of instruction flow using two-step pipeline. Instruction I3, being a control transfer 
instruction needs two machine cycles (MCs) to be executed. The rest of the instructions are 
executed in a single MC. TMC is the length of an MC.

C1

Rf
C2

OSC1

OSC2

PIC16Cxxx

SLEEP To internal
logic

XTAL

Figure 2.5 
Crystal oscillator. C1, C2 = 15 pF to 68 pF for a 4 MHz crystal (XTAL).



PIC Microcontrollers	 21

The last option is to use an external clock as the main oscillator for 
the microcontroller. Figure 2.7 shows this option for a medium-end PIC 
microcontroller.

2.1.5  Configuration Bits

All PIC microcontrollers have specific bits for their configuration. These 
configuration bits are stored in non-volatile memory (EEPROM) when 
the device is being programmed. However, they are not accessible once 
the PIC is executing the program. More specifically, the program cannot 
modify these bits. The configuration bits allow the programmer to specify 
certain aspects of the microcontroller to better fit the intended application. 
Configuration bits can modify the following parameters:

Type of oscillator•	
Watchdog timer on or off•	
Program memory protection•	
Protection of EEPROM data if available•	
Specifications for reset and power supply•	

Not all these parameters can be programmed in all devices. The following 
example describes how these bits are programmed.

VDD

OSC1

OSC2Fosc/4

Internal
clock

PIC16Cxxx

REXT

CEXT

Figure 2.6 
RC oscillator. REXT = 3 kΩ to 100 kΩ; CEXT > 20 pF.

External
clock

Open

PIC16Cxxx

OSC1

OSC2

Figure 2.7 
Using an external clock as an oscillator in a PIC.



22	 Microcontrollers: Fundamentals and Applications with PIC

Example 2.2

Configuration bits in a medium-end PIC make up a word stored in address 
2007h in program memory. This address is only accessible during the program-
ming of the microcontroller. Once the program is being executed, it cannot 
access this address. Figure 2.8 shows the configuration bits for the PIC16F873.

2.1.6 R eset Options

Reset sets the microcontroller in a known, predetermined state. During 
the transient time of reset, the microcontroller is temporarily paralyzed 
and not executing any program instructions. Following this transient 
state, the device moves to the known, predetermined state. In PIC micro-
controllers, reset sets the program counter to zero. Therefore, after the 

CP1 CP0 DEBUG – WRT CPD LVP BODEN CP1 CP0 PWRTE#

CP1, CP0: FLASH program memory code protection:
 11 - Code protection off
 10 - Only last 256 cells (F00h to FFFh) protected
 01 - Only page 1 (800h to FFFh) protected
 00 - All memory protected (000h to FFFh)
DEBUG: In-circuit Debugger mode
 1 - disabled (RB6 and RB7 are general purpose I/O pins)
 0 - enabled (RB6 and RB7 are dedicated to the debugger)
WRT: FLASH program memory write enable:
 1 - enabled
 0 - disabled
CPD: Data EEPROM memory code protection:
 1 - Code protection off
 0 - Code protection on
LVP: Low voltage In-circuit serial programming:
 1 - enabled
 0 - disabled
BODEN: Brown-out reset:
 1 - enabled
 0 - disabled
PWRTE#: Power-up timer:
 1 - disabled
 0 - enabled
WDTE: Watchdog timer:
 1 - enabled
 0 - disabled
FOSC1, FOS0: Oscillator selection bits:
 11 - RC
 10 - HS
 01 - XT
 00 - LP

713 12 11 10 9 8 6 5 4 3 2 1 0
WDTE FOSC1 FOSC0

Figure 2.8 
Configuration bits for PIC16F873.



PIC Microcontrollers	 23

reset has finished, the first instruction executed is the one located at this 
memory address, independently of what happened before the reset.

There are several reasons that can originate a reset; these are known as 
reset sources. Reset sources can be different for different microcontrollers. 
The following are common to most PIC microcontrollers:

External reset•	

Power-on reset•	

Watchdog reset•	

Brown-out reset•	

Figure  2.9 shows the logic circuit used to produce the reset signal in 
PIC microcontrollers. The circuit needs to ensure that once the reset tran-
sient is finished, the microcontroller is in a stable state. More specifically, 
this circuit needs to guarantee that the microcontroller will only leave the 
reset state if the voltage has reached a stable and high enough value. This 
is the task of the blocks associated with the VDD signal in Figure 2.9. These 
blocks also function during a brown-out reset.

MCLR#

WDT
SLEEP#

Brown-out reset
BODEN

S

RESET#

OST#
OST

OST/PWRTOSC1

RC
Oscillator

Enable PWRT

Enable OST

10-bit counter

10-bit Counter
PWRT

PWRT#

R Q

VDD
detector

VDD

Figure 2.9 
Simplified block diagram for reset in a PIC microcontroller. The operation of some of these 
blocks can be programmed through configuration bits (BODEN, PWRTE, etc.).



24	 Microcontrollers: Fundamentals and Applications with PIC

Furthermore, the reset circuit has to guarantee that the microcontroller 
will only leave the reset state if the main oscillator is working and is sta-
ble. This is the task of the block labeled OST/PWRT in Figure 2.9. It takes a 
certain amount of time for the main oscillator to reach stable values for its 
frequency and amplitude after it has been turned on. The microcontroller 
should not leave the reset state if frequency and amplitude are not yet 
stable. The main oscillator is turned on when the microcontroller is first 
powered, when it leaves its low-power consumption mode, or in the case 
of a brown-out. These cases correspond to the power-on reset, reset due to 
low-power consumption mode, and brown-out reset.

The block labeled OST/PWRT in Figure 2.9 has two timers: oscilla-
tor start-up timer (OST) and power-up timer (PWRT). An internal RC 
oscillator, independent of the main oscillator, introduces a 72 ms delay 
to the signal PWRT after the oscillator has been powered. The OST 
introduces an additional delay of 1024 pulses. This delay is long enough 
for the oscillator to reach stable amplitude and frequency values. The 
OST starts its operation only after the PWRT has reached its maximum 
value.

Figure 2.10 shows the time sequence for the signals associated to the 
OST/PWRT block in two situations: during a power-on reset and during 
a manual reset.

VDD

TPWRT

TOST

TPWRT

TOST

MCLR#

PWRT#

OST#

RESET#

(a)

(b)

VDD

MCLR#

PWRT#

OST#

RESET#

Figure 2.10 
Time diagrams showing the sequence of signals associated with the OST/PWRT block. (a) 
Power-on reset—MCLR# pin connected to VDD. (b) Manual reset.



PIC Microcontrollers	 25

An external reset occurs when the pin MCLR# is set to 0. MCLR# must 
be at logic value 1 during the normal operation of the microcontroller. An 
external reset can occur during the regular operation of the microcon-
troller or when the microcontroller is in a low-power mode (SLEEP). It is 
possible to connect an external switch to pin MCLR# to create a manual 
reset as shown in Figure 1.4a.

Power-on reset occurs when MCLR# is connected to the microcon-
troller’s power supply as shown in Figure 2.11. Once the microcontroller 
detects the triggering of VDD it creates a reset signal to guarantee that the 
microcontroller will start operating correctly. This configuration, connect-
ing MCLR# to VDD directly or using a resistor, as shown in Figure 2.11a, 
avoids the need to introduce external circuits. If the power supply has a 
long settling time, it is necessary to guarantee that the voltage at MCLR# 
will be below the threshold until VDD reaches its appropriate value. This 
is shown in Figure 2.11b.

A watchdog reset occurs when the watchdog timer reaches its maximum 
value. This will happen when the program running in the microcontroller 
cannot clear the internal counter of the watchdog time before reaching its 
maximum value. A watchdog reset may happen when the microcontroller 
is in its regular working mode or when it is in the low-power consumption 
mode. In this last case, the microcontroller will leave the low-power mode 
without producing a reset. Section 2.1.8 describes in further detail how 
the watchdog timer operates.

Brown-out reset occurs due to a transient or glitch in the voltage (VDD) 
supplied to the microcontroller. The microcontroller has a circuit that will 
produce a reset signal in this situation and will keep the microcontroller in 
this state while the voltage VDD is below a predetermined threshold as was 
shown in Figure 2.9. Once VDD recovers above the threshold, the PWRT keeps 

VDD

VDD

D

(a) (b)

MCLR# MCLR#

PIC16Cxxx PIC16Cxxx

VDD

C

R

VDD

R

Figure 2.11
  (a) Circuit to guarantee power-on reset: MCLR# and VDD pins can be connected directly 
or through a resistor. (b) Circuit for power-on when the voltage supply has a long settling 
time.



26	 Microcontrollers: Fundamentals and Applications with PIC

the reset signal for an additional 72 ms. This guarantees that the main oscil-
lator and VDD are within their nominal parameters after leaving the reset 
state. Figure 2.12 shows different situations related to brown-out reset.

When programming the microcontroller it is also possible to configure 
some of its reset sources. More important, however, is that after a reset 
has occurred it is possible to find out the origin of the reset signal. This 
can be done by reading some special function registers such as STATUS 
and PCON.

Example 2.3

Figure 2.13 shows the PCON register for the PIC16F873 that is a medium-end 
microcontroller. Two bits in this register are used to determine if the reset signal 
was a power-on reset (POR) or a brown-out reset (BOR) by setting the appro-
priate bits to 0. The program must set both bits (POR# and BOR#) to 1 after the 
reset. Also, Figure 3.14 (Chapter 3) shows the register STATUS in which the bit 
TO# is set to 0 when the watchdog timer produces a reset.

VDD

VDD

VDD

RESET#

RESET#

RESET#

<72 ms 72 ms

72 ms

72 ms

Figure 2.12
Reset signal due to brown-out in several situations. The timer PWRT guarantees that VDD 
will be at its nominal value once it leaves the reset state.

PCON

- - - - - - POR#

POR#: Power-on reset indicator
 1 – Power-on reset did not occur
 0 – Power-on reset occurred
BOR#: Brown-out reset indicator
 1 – Brown-out reset did not occur
 0 – Brown-out reset occurred

BOR#
7 6 5 4 3 2 1 0

Figure 2.13
Two bits in the special function registry PCON in PIC16F873 are used to determine the 
origin of a reset signal. 



PIC Microcontrollers	 27

2.1.7  Low-Power Consumption Mode

When the microcontroller is in low-power consumption mode (sleep mode), 
most of its functions, including the main oscillator, are stopped. The power 
consumed by the microcontroller in these conditions is extremely low, less 
than 1 μA for some models.

The instruction sleep places the microcontroller in the low-power 
consumption. While in this state, the values stored in the data memory 
registers are not changed. Because of the pipeline process, in which the 
instruction after sleep has already entered the CPU, this instruction will 
be executed once the microcontroller wakes up. For this reason it is rec-
ommended that the instruction after sleep is an nop instruction. Sleep 
also sets the watchdog timer counter to zero.

The microcontroller will wake up leaving the low-consumption mode 
in any of these three events:

Reset•	

Overflow of watchdog timer counter (if not disabled)•	

Interrupt, either external or from its internal peripherals•	

If the microcontroller wakes up due to a reset, it will execute the instruc-
tion stored at address 0 in the program memory. If it wakes up due to 
the watchdog timer, it will continue running the program, executing the 
instruction after the sleep instruction. If the microcontroller wakes up due 
to an external interrupt with the interrupt system enabled, it will execute 
the instruction immediately after the sleep instruction, and then the pro-
gram counter will jump to address 4 in the program memory searching 
for the interrupt routine. However, if the interrupt system is not enabled, 
the microcontroller wakes up, executes the instruction after the sleep 
instruction and continues with the program sequence without jumping 
to address 4. The interrupt system can be enabled or disabled by modify-
ing the global interrupt enable (GIE) bit. When GIE equals 1 the interrupt 
system is enabled; when GIE equals 0 it is disabled. GIE is bit number 7 in 
the special function register INTCON.

2.1.8  Watchdog Timer

The watchdog timer (WDT) consists of an oscillator and a pulse coun-
ter. The WDT (watchdog timer enable) oscillator is independent from the 
main oscillator; it continues working when the microcontroller is in low-
power mode. If the pulse counter reaches its maximum value (overflows) 
during the normal operation of the microcontroller, the WDT times out 
and generates a reset signal for the microcontroller. If the pulse counter 
reaches its maximum value when the microcontroller is in a low-power 



28	 Microcontrollers: Fundamentals and Applications with PIC

mode, the microcontroller wakes up executing the instruction right after 
the sleep instruction.

Figure 2.14 shows the block diagram for the WDT in a medium-end PIC. 
Bit WDTE (watchdog timer enable) enables the watchdog timer. Once the 
program is running normally, the WDT cannot be disabled.

The WDT times out every 18 ms. Therefore, to avoid the WDT timing 
out and generating the reset signal for the microcontroller, the internal 
pulse counter needs to be set to 0 before the 18 ms have elapsed since the 
last time it was set to 0. The instruction clrwdt is used for this purpose. It 
is possible to extend the 18 ms timeout up to 2.3 s by assigning an addi-
tional counter to the WDT. This counter is called prescaler. Table 2.1 shows 
the available time out times for the four configuration bits (PSA, PS0, PS1, 
and PS2) of the prescaler. These bits belong to the register OPTION. PSA 
must be at value 1 to assign this prescaler counter to the WDT.

2.2  PIC Microcontroller Families

PIC microcontrollers can be classified into three main types according to 
the length of their instructions:

Low-end microcontrollers: 12-bit instructions•	
Medium-end microcontrollers: 14-bit instructions•	
High-end microcontrollers: 16-bit instructions•	

Internal RC
oscillator WDT

WDTE
PSA

0
MUX
1

Prescaler
9-bit counter

(8)

0 ... 7
MUX

0 1
MUX

Carry over

PS2:PS0

To Timer0

PSA

T=18 ms

From Timer0 clock

Figure 2.14
Block diagram of the circuits associated with a watchdog timer in medium-end PICs. PSA 
and PS2:PS0 are bits from the special function registry OPTION. WDTE is the configuration 
bit that enables the watchdog timer.



PIC Microcontrollers	 29

An alternative method to classify PIC microcontrollers is by their num-
ber of pins. This way, PIC microcontrollers can be classified as PIC10, 
PIC12, PIC16, PIC17, and PIC18. Some of these families, such as the PIC16, 
have large subfamilies. Furthermore, the devices in each one of these 
families may have instructions with different lengths. This is the case of 
the PIC12 and PIC16 families that have microcontrollers in the low- and 
medium-end ranges. Table 2.2 shows these two classification modes.

2.2.1  Low-End Microcontrollers

Low-end PIC microcontrollers have an instruction set of 33 instructions, 
each one being 12 bits long. Program memory can be up to 2048 words, 
with each word also having 12 bits. This memory is organized in pages of 

Table 2.1

Division Factors for a Prescaler and Their Effect on Watchdog Timer 
Overflow

PS2:PS0 Prescaler Division Factor
Approximate Watchdog 

Timer Overflow (ms)

000 1:1 18

001 1:2 36

010 1:4 72

011 1:8 144

100 1:16 288

101 1:32 576

110 1:64 1152

111 1:128 2304

Note: PS2, PS1, and PS0 are bits from the OPTION special function register.

Table 2.2

Summary of PIC Microcontroller Families

Family Low-end
Medium 

-end High-end
Main 

Characteristic

PIC10 X 6 pins

PIC12X5 X 8 pins

PIC12 (except PIC12X5) X 8 pins

PIC16X5 X —

PIC16 (except PIC16X5) X —

PIC17 X —

PIC18 X Improved 
high-end



30	 Microcontrollers: Fundamentals and Applications with PIC

512 words. Data memory consists of 8 bit registers, organized in banks of 
up to 32 registers.

Low-end PICs have a two-level stack to store program memory 
addresses. These PICs do not allow interrupts. Their I/O resources have a 
low number of devices, up to three input/output ports each one of 8 bits, 
a timer, and a comparator.

Low-end PICs can be further classified as:

PIC16X5xx family•	
PIC12X5xx family•	
PIC10Fxxx family•	

PIC16X5xx can be considered as the main family of low-end PIC micro-
controllers. Their program memory can be EPROM, OTP, or flash depend-
ing on the model. Their power consumption is less than 2 mA at 5 V in 
normal operating mode, and less than 3 μA at 3 V for low-consumption 
mode. They are available with 10, 20, or 28 pins. Figure  2.15 shows the 
internal architecture of the PIC16X5xx family.

The PIC12X5xx family is characterized by using an eight-pin package. 
Given the low number of pins, their I/O resources are limited to a 6-bit 
parallel port, a timer, and an A/D converter depending on the specific 
model. The program memory can be OTP or flash. Some models have an 
EEPROM for data memory. Power consumption is less than 2 mA at 5 V 
in regular operating mode, and less than 2 μA at 3 V in low-power mode. 
Figure 2.16 shows their internal architecture.

The PIC10Fxxx microcontrollers are quite small and are available in 
packages of six or eight pins. Their program memory is flash, although 
they do not have additional EEPROM for permanent data storage. Their 
I/O resources are limited to a parallel port of 4 bits, a timer, and a com-
parator. Power consumption is less than 350 μA at 2 V in regular operating 
mode, and less than 100 nA at 3 V in low-power mode. Figure 2.17 shows 
their internal architecture.

2.2.2  Medium-End Microcontrollers

Figure 2.18 shows the generic architecture of medium-range PICs. These 
have an instruction set of 35 instructions, each one 14 bits long. Their pro-
gram memory can be up to 8192 words, each one also of 14 bits. This pro-
gram memory is organized in pages of 2048 words. Their data memory is 
made up of 8-bit registers, organized in banks of 120 registers. Medium-
end PICs can have up to four banks. In general, medium-range microcon-
trollers have some EEPROM data memory and an eight-level stack to store 
program memory addresses.

These PICs have a system of fixed interrupts for internal interrupts (from 
their internal systems) and one external interrupt. Each I/O block can 



PIC Microcontrollers	 31

generate an interrupt request to the CPU. All medium-range PICs have a ter-
minal to receive interrupt requests from external devices. Their I/O devices 
are several parallel ports (ports A, B, C, etc.); up to three timers; two modules 
for capture, comparison, and pulse width modulation; several serial ports 
for synchronous and asynchronous communication; a 10-bit A/D converter 
associated to an analog multiplexer, and so forth. Figure 2.19 shows the inter-
nal architecture for the PIC16F873, used in several examples in this book.

Medium-range PICs can be further classified as:

PIC16 (except the PIC16X5xx family that are low-end PICs)•	
PIC12X6xx; these have an eight-pin package•	

Medium-end PICs with an eight-pin package can operate at a low volt-
age (2 V). Their power consumption is 100 μA for their normal operation, 
and 1 nA in low-power mode. Figure 2.20 shows the internal architecture 
for a medium-range PIC with an eight-pin package.

Inst. Addr. B

Inst. B
IR

Direct address 5

Direct data 8 8
FSR

MUX

MUX W

Indirect addr.

8

8

8

8

3ALU

ResetOscillator

Configuration
bits

OSC1
OSC2

MCLR#

Instruction
decode and

control

VDD
VSS

WDT

Timer0

STATUS

Data Addr. B

PC

Program
memory Data

memory

Port A
4

RA3-RA0

RB7-RB0

RC7-RC0

8

8

Port B

Port C

9-11 Data Bus 8

8

07

12

2-level
stack

011

Figure 2.15
Internal architecture of PIC16X5xx family.



32	 Microcontrollers: Fundamentals and Applications with PIC

2.2.3  High-End Microcontrollers

High-end microcontrollers are characterized by using 16-bit instructions, 
a deeper stack, and an interrupt system that can handle internal interrupts 
as well as several inputs for external interrupts. Some of these PICs have 
an open architecture. This allows the increase of both program memory 
and data memory. The number of available devices for high-end micro-
controllers is also larger.

High-end microcontrollers can be further classified as:

PIC17•	
PIC18•	

PIC17 microcontrollers have an instruction set of 58 instructions, each 
one of 16  bits. Their program memory size can be up to 65,536 words 
of 16 bits each. Their data memory can be up to 1024 registers of 8 bits. 
Program memory can be EPROM, ROM, or OTP. The stack has 16 levels. 
Their interrupt system can handle different priorities.

Inst. Addr. B

Inst. B
IR

Direct address 5

Direct data 8
FSR

MUX
BDIR-Data

MUX W

Indirect
address

8

8

8

3

8

8

ALU

ResetOscillator

Configuration
bits

OSC1
OSC2

MCLR#

Instruction
decode &

control

Internal RC
oscillator

VDD
VSS

WDT

Timer0

STATUS

PC

Program
memory Data

memory

9-11 Data Bus 8

8

0 6
GP5-GP0

2

GPIO

EEPROM
data

memory

7

12

2-level
stack

011

Figure 2.16
Internal architecture of PIC12X5xx microcontroller family.



PIC Microcontrollers	 33

PIC17 microcontrollers have an open architecture. The devices in the 
PIC17 family can work in four configurations: microcontroller, protected 
microcontroller, extended microcontroller, or microprocessor. When oper-
ating in the microcontroller or protected microcontroller modes, the PIC17 
can only access its internal memory. When working as an extended micro-
controller or as a microprocessor, it is possible to use external memory 
that the microcontroller can access.

These PICs have several I/O devices, including parallel ports, serial 
ports, timers, and A/D converters. Figure 2.21 shows the internal archi-
tecture of the PIC17 family.

Microcontrollers that belong to the PIC18 family have flash memory and 
an instruction set of 77 instructions of 16 bits each. Their program mem-
ory can have a size of up to 2 MB, and their data memory can reach 4096 
registers of 8 bits in each one. Some members of the PIC18 family allow 
external memory to store program memory. Their stack is 31 levels deep; 

Inst. Addr. B

Inst. B
IR

Direct address 5

Direct data 8 8
8

FSR

MUX
B

Data Addr.

MUX W

Indirect
address

8

8

3

8

ALU

Reset

Configuration
bits

MCLR#

Instruction
decode and

control

Internal RC
oscillator

VDD
VSS

WDT
Timer0

STATUS

PC

Program
memory
(FLASH) Data

memory

9-11 Data Bus 8

8

0 GP3-GP0
4

3

GPIO

Comparator

7

011

12

2-level
stack

Figure 2.17 
Internal architecture of the PIC10Fxxx. These are low-end microcontrollers with flash mem-
ory and six-pin packaging.



34	 Microcontrollers: Fundamentals and Applications with PIC

they can handle internal interrupts as well as three external interrupts. 
Some devices of the PIC18 family have been designed to work with low 
voltages (from 2.0 V to 3.6 V) using less than 2 mA. Figure 2.22 shows the 
architecture of the PIC18 family.

Inst. Addr. B

Inst. B
IR

Direct address 7

Direct data 8 8
8

8

3

MUX

MUX W

Indirect
address

Data Addr. B

Port A

Port B

Port G

Interrupts

Internal
interrupts

INT
(external)

RG7-RG0

RB7-RB0

RA5-RA0

8

8

ALU

ResetOscillator

Configuration
bits

OSC1
OSC2

MCLR#

Timers CCP
modules

LCD drivers

Other
peripherals

10-bit A/D
EEPROM

data
memory

Instruction
decoding and

control

VDD
VSS

WDT

Program
memory Data

memory

13 Data Bus 8

8

8

8

607

14

(8 levels)

Stack

013

Serial ports
(USART, etc.)

FSR

STATUS

PC

Figure 2.18
General architecture of medium-end PIC microcontrollers.



PIC Microcontrollers	 35

Inst. Addr. B

Inst. B
IR

Direct Address 7

Direct data 8 8
8

8

3

FSR

MUX

MUX W

Indirect
address

Data addr. B

Port A

Port B

Port C

Interrupts

Internal
interrupts

INT
(external)

RC7-RC0

RB7-RB0

RA5-RA0

8

8

ALU

ResetOscillator

Configuration
bits

OSC1
OSC2

MCLR#

SSP USART 10-bit A/D
EEPROM

data
memory

Timer0 Timer1 Timer2 CCP1 CCP2

Instruction
decoding &

control

VDD
VSS

WDT

STATUS

PC

Program
memory Data

memory

13 Data Bus 8

8

8

8

607

14

8-level
stack

013

Figure 2.19 
Internal architecture of PIC16F873, shown as an example of a medium-end PIC 
microcontroller.



36	 Microcontrollers: Fundamentals and Applications with PIC

Inst. Addr. B

Inst. B
IR

Direct address 7

Direct data 8
FSR

MUX

Data Add. B

MUX W

Indirect
address

8

8

8

3

8

8

ALU

ResetOscillator

Configuration
bits

OSC1
OSC2

MCLR#

Instruction
decode &

control

Internal
oscillator

VDD
VSS

WDT

Timer0 A/D
converter

STATUS

PC

Program
memory Data

memory

13 Data B 8

8
0

6
GP5-GP0

2

GPIO

EEPROM
data

memory

Interrupts INT
(external)

Internal
interrupts

7

14

(8 levels)

011

Stack

Figure 2.20
Internal architecture of PIC12CE67X family. These are medium-end microcontrollers with 
an eight-pin package.



PIC Microcontrollers	 37

Addr. Inst. B

Inst. B

IR
Direct address 8

Direct data 8 8
8

8

3

FSR0
FSR1

MUX

MUX W

Indirect
address

Data addr. B

Port A

Port B

Port G

Interrupts

Internal
interrupts

INT
(external)

RJ7-RJ0

RB7-RB0

RA5-RA0

8

8

ALU

ALUSTA

ResetOscillator

Configuration
bits

OSC1
OSC2

MCLR#

Timers Capture
modules

10-bit A/D PWM
modules Serial ports

Instruction
decode and

control

VDD
VSS

WDT

TABLEPTR

PCM
U

X

Program
memory

Data
memory

16

Data B 8

8

8

3

6
07

16

(16 levels)Stack

TABLE LATCH

015

SBI

16

3

AD 15-AD0
(Ports C&D)

ALE, OE#,
WR#

(Port E)

Figure 2.21
Internal architecture of PIC17. Their program memory can be externally expanded.



38	 Microcontrollers: Fundamentals and Applications with PIC

Inst. Addr. B

Inst. B

IR
Direct address 12

Direct data 8 8
8

5

FSR0
FSR1
FSR2

MUX

MUX W

Indirect
address

Data Addr. B

Port A

Port B

Port C

Port D

Port E

Interrupts

Internal
interrupts

INT
INT1
INT2

RC7-RC0

RD7-RD0

RE7-RE0

RB7-RB0

RA5-RA0

8

8 8

ALU

STATUS

ResetOscillator

Configuration
bits

OSC1
OSC2

MCLR#

Timers
CCP

modules CAN

10-bit A/DUSART

Other
peripherals

USB
EEPROM

data
memory

Instruction
decode and

control

VDD
VSS

WDT

TABLEPTR

PCM
U

X
Program
memory

Data
memory

21

Data B 8

8
6

07

12

16

(31 levels)Stack

TABLE LATCH

015

(external)

3

8

8

8

8

Figure 2.22
Internal architecture of PIC18. These microcontrollers have superior performance to 
medium-end PICs.



39

3
Memory in Microcontrollers

This chapter describes the general structure and organization of memory 
in microcontrollers, in particular medium-end PICs. The chapter begins by 
defining basic memory concepts, including word, address, and memory size. 
This is followed by the description of the two methods to organize memory 
in microcontrollers: linear memory and paged memory. The chapter then 
describes several technologies used for memory fabrication and finishes by 
explaining how memory is organized in medium-end PIC microcontrollers.

3.1  Basic Concepts

Memory in a microcontroller is the place that stores the program being 
executed and the data or variables used by that program. Memory can 
be considered as a set of cells or locations, identified by their address. 
Each cell stores a word. A word is the logic unit of information stored 
in a cell. Words can have 1, 8, 12, 14, or 16 bits. An 8-bit word is called a 
byte (B; Figure 3.1)

The number of memory cells determines its size. Size is measured in 
words; according to their bits or bytes; or words having 12, 14, or more 
bits. While the International System of Units established prefixes that are 
factors of 10 (kilo, mega, giga, tera, etc.), it is customary in computer sci-
ence to utilize the same prefixes to indicate multiplication factors that are 
powers of 2. To avoid confusion, in 1998 the International Electrotechnical 
Commission (IEC) introduced new prefixes to be used for multiplication 
factors that are powers of 2. Table 3.1 shows these prefixes. However, as 
these new prefixes are not commonly used in practice, this book will con-
tinue using the notation of powers of 10 prefixes. For example, when refer-
ring to a memory size of 1024 bytes, we will write 1 kB instead of using 
1 KiB, which would the correct way to write it according to the IEC.

The address identifies a specific cell in the whole memory. The simplest 
way of identifying cells is to assign to each one of them an integer num-
ber that is continuously increasing. This makes the address equal to the 
binary number that identifies a specific cell (Figure 3.2). With D being the 
address of a generic cell, the possible address values in a memory of N 
cell are



40	 Microcontrollers: Fundamentals and Applications with PIC

7 0
0

D

N-1

Addresses

Address

8-bit
word

Figure 3.2
Addresses in a memory of N cells, with each cell being 8 bits long.

Table 3.1

Examples of Prefixes, Symbols, and Multiplication Factors

International System of Units
International Electrotechnical 

Commission

Prefix Symbol Factor Prefix Symbol Factor

kilo k 103 kibi Ki 210

mega M 106 mebi Mi 220

giga G 109 gibi Gi 230

tera T 1012 tebi Ti 240

Bit number

MSB LSB

0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

7 6 5 4 3 2 1 0

Figure 3.1
An 8-bit word (byte), indicating the positions of the most significant bit (MSB) and least 
significant bit (LSB) within this word.



Memory in Microcontrollers	 41

	 D = 0, 1, 2, …, (N – 1).	 (3.1)

The number of bits (n) needed to identify the address of a cell depends 
on the memory size (N):

	 N = 2n.	 (3.2)

For example, a 1 kB memory needs n  =  10  bits in order to specify the 
address of any cell as 210 = 1024, which is the number of different cells in 
the memory. The allowed memory addresses are D = 0, 1, 2, …, 1023. Using 
hexadecimal notation, as is customary in computer science, the allowed 
memory addresses can be written as D = 0, 1, 2, …, 3FFh.

3.1.1  Logic Organization of Memory

There are two main methods of organizing memory in microcontrollers: 
as a single block (linear organization) or by sets of blocks called pages. 
In linear organization, the cell addresses are consecutive binary num-
bers. Each cell is identified by its linear address (D), made up by a unique 
binary number. Linear addresses conform to Equation 3.1.

A memory page is a fixed-size portion of memory. Pages are consecutive 
and do not overlap. Each page can be identified with a consecutive num-
ber called a page number. Inside a page, cells are identified by their posi-
tion—called displacement—relative to the beginning of the page. Within 
a page-organized memory such as shown in Figure 3.3, the address of a 
specific cell is a combination of two elements: page number (pgnum) and 
its displacement (disp). These two elements make up the logic address 
(Logaddr) for the cell:

	 Logaddr = pgnum : disp.	 (3.3)

Page Displacement
Logic address

Paged memory

n–1 n+1n

Figure 3.3
Memory organized in pages. The logic address for a single cell is made of the page number 
and the displacement within the page.



42	 Microcontrollers: Fundamentals and Applications with PIC

Any linear address can be obtained from the logic address by multiply-
ing the page number by the size of the page (pgsz) and adding the dis-
placement of the cell within the page:

	 D = pgnum × pgsz + disp.	 (3.4)

For example, in the memory shown in Figure 3.4 organized in pages of 256 
B (100h), a cell located in page 2 with a displacement of A5h has a linear 
address equal to D = 2 × 100h + A5h = 2A5h.

It is important to note that if the size of the page is a power of 2 (that is, 
pgsz = 2k), the number needed to indicate the displacement within a page 
is a binary number of k bits. Working in binary, the product pgnum × pgsz 
adds k zeros to the right of pgnum. Adding disp as indicated in Equation 
3.4, the value disp takes the place of these zeros. Therefore, in the resulting 
linear address, the most significant bits are pgnum and the least significant 
bits are disp as shown in Figure 3.5.

0

7 0 7 0 7

Linear address

0 7 0

0

A5h

100h

1FFh

2A5h

200h

2FFh

300h

3FFhFFh
Page

Displacement

1 2 3

Figure 3.4 
1 kB memory paged in 256 B pages showing the relationship between the linear address 
and the logical address. The linear address of the cell located in page 2 with a displacement 
A5h is 2A5h.

Linear address

n bits

n-k bits k bits

disppgnum

Figure 3.5 
Linear address based on the components of logic address in a paged system when page size 
is a power of 2. The displacement (disp) takes the k least significant bits, and the page num-
ber (pgnum) takes the n – k most significant bits in the n bit linear address.



Memory in Microcontrollers	 43

3.1.2  Types of Memory

Program memory in a microcontroller is non-volatile, read-only memory. 
Several technologies can be used for manufacturing program memory: 
read-only memory (ROM), erasable programmable ROM (EPROM), 
one-time programmable (OTP), and flash. On the other hand, data mem-
ory needs to be read and written, but the information stored does not 
need to be preserved once the microcontroller has been unpowered, so 
volatile memory can be used. Data memory normally uses static random-
access memory (RAM). Some microcontrollers also use external, non-vol-
atile memory for data memory. This is done by using electrically erasable 
programmable read-only memory (EEPROM) to store values of data that 
are fixed or do not change often.

RAM: RAM memory can be read and written. There are two types 
of RAM: static RAM and dynamic RAM. Information stored in 
static RAM is kept indefinitely as long as the memory is powered. 
Dynamic RAM must be refreshed periodically to keep the infor-
mation stored. Dynamic RAM is widely used in personal com-
puters but not in microcontrollers.

ROM: For those microcontrollers that use ROM memory, the informa-
tion is written during the manufacturing process and cannot be 
changed later. For this reason, it is necessary to ensure that the pro-
gram code and fixed data values are correct before the microcon-
troller is created. Using ROM is the most economic way of producing 
large quantities of microcontrollers for a given application. In PIC 
microcontrollers, the label “CR” indicates that the program memory 
uses ROM memory, for example, PIC16CR65 and PIC16CR72.

EPROM and OTP: EPROM and OTP memory are very similar; they 
only differ in their packaging. The packaging for EPROM devices 
has a glass window that allows ultraviolet light to go through to 
erase the device. OTP devices use the same internal memory with-
out the glass window. Therefore, once the user has programmed 
them, they cannot be altered or erased. In PIC microcontrollers, 
the label “C” indicates that they use EPROM or OTP memory. For 
example, PIC16C74B/JW is an EPROM device, as the suffix JW 
indicates the existence of the glass window to erase its contents. 
The PIC16C72A/P and PIC16C74B/SO microcontrollers use OTP 
memory. Their packaging is plastic DIP (dual in-line package) for 
the first one and plastic SOIC (small-outline integrated circuit) for 
the second one.

EEPROM: EEPROM is non-volatile memory that can be read and 
written electrically. Cells do not need to be previously erased in 
order to store new information in them. The number of times that 



44	 Microcontrollers: Fundamentals and Applications with PIC

the EEPROM memory can be written is finite, although it is a large 
value, on the order of millions.

Flash: Information in flash memory can be read and written to indi-
vidual cells. However, existing data need to be erased before new 
data can be written in a cell. Erasing occurs in blocks of cells instead 
of erasing individual cells; this is the main difference compared to 
EEPROM memory. Erasing data means to set to 0 all the bits in 
the block of cells. Writing data means to set specific cells to 1. It 
is possible to set to 1 a bit that was at 0, but in order to set to 0 a 
bit that was previously at 1, it is first necessary to erase its block 
of cells. Therefore, writing information in a cell in flash memory 
becomes an operation involving reading, erasing, and writing the 
block of cells in which we want to store that information. All these 
operations (erasing, writing, reading) are carried out using the 
nominal supply voltage, without it being necessary to use higher 
voltages. Flash memory can be written or erased a finite number 
of times, in the range of hundred thousands of times. The label “F” 
in PIC devices indicates that they use flash memory, for example, 
PIC16F873.

3.2  Memory in Medium-End PIC Microcontrollers

Memory in PIC microcontrollers is organized according to the Harvard 
architecture. Therefore, there are two independent memory spaces: one 
for program and one for data. Program memory is a read-only memory 
built on ROM, OTP, EPROM, or flash technologies. It stores the program 
instructions for the microcontroller to execute. Some PIC microcontrollers 
allow the program to read its own memory, thus making it possible to 
store data that does not change in the program memory. In some other 
PIC microcontrollers with flash memory, it is possible to write data in the 
program memory.

Data memory is built on static RAM. Therefore, it is a volatile, read and 
write memory. Some PIC models also have an additional EEPROM mem-
ory to store data that does not change very often. Table 3.2 shows the size 
of memory available in some medium-end PIC microcontrollers.

3.2.1  Program Memory

Program memory is organized in pages. Medium-end PICs can have 
up to four pages of 2k words each, making a total memory size up to 8k 
words. The length of a word in medium-end PIC microcontrollers is 14 



Memory in Microcontrollers	 45

bits. Figure 3.6 shows the organization of memory. Address 0h in page 0 
is reserved for reset, while address 4h in the same page 0 is reserved for 
the interrupt vector. These addresses hold the instructions to go to the 
appropriate programs.

3.2.1.1  Addressing Program Memory

The program counter (PC) is a register in the PIC microcontroller that 
addresses the program memory. In particular, the PC stores the address 
of the next instruction to be executed. That is, the PC points toward the 
instruction that will be executed after the instruction currently being exe-
cuted. The PC in medium-end PIC microcontrollers is 13 bits long, thus 
allowing for the addressing of 8k words in the program memory. Due to 
the paging system, bits 12 and 11 in the PIC indicate page number, and bits 
10 to 0 indicate the address within that page.

Table 3.2

Size of Program and Data Memories for Several Medium-End PIC 
Microcontrollers

PIC

Program Memory 
(in 14-Bit Words) 

Flash

Data Memory (in Bytes)

RAM EEPROM

PIC18F83 512 36 64

PIC16F84/84A 1024 68 64

PIC16F873/874 4096 192 128

PIC16F876/877 8192 368 256

800h0
004h

Page 0 1 2 3

3FFh
400h

7FFh
13 0 13 0 13 0 13 0

FFFh

1000h

17FFh

1800h

1FFFh

Figure 3.6 
Program memory pages in medium-end PIC microcontrollers. They can have up to four 
pages of 2k words, each one with a total of up to 8k words. Each word is 14 bits long. The 
shadowed part is not part of the PIC16F873 because this microcontroller has 4k cells dis-
tributed between pages 0 and 1. The PIC16F84 only has the first 1024 memory cells that are 
located from address 0 to address 3FFh in page 0.



46	 Microcontrollers: Fundamentals and Applications with PIC

The PC is related to two special function registers in the data memory: 
PC latch high (PCLATH) and PC low (PCL). The 8 least significant bits 
in the PC are the PCL register. This register can be read and written by 
the programmer. The 5 most significant bits in the PC (PCH) cannot be 
read, although they can be modified through the PCLATH register. As 
shown in Figure 3.7, the page number is loaded in bits 4 and 3 in PCLATH 
(PCLATH <4:3>). Therefore, it is possible to know at any time the content 
of the least significant byte in the PC by reading the register PCL, but it is 
not possible to know the value of the 5 most significant bits of PC because 
PCLATH is not updated from the PC.

When the program is being executed, the PC is incremented by 1 unit 
with every instruction, with the exception of those instructions that mod-
ify the content of the PC. Instructions such as goto (unconditional jump), 
call (subroutine call), return, retfie, retlw, and other instructions whose 
destination is the PCL register, modify the content of the PC register. In 
these cases, the relationship between the PC and the registers PCLATH 
and PCL is as follows:

When executing an instruction whose destination is the PCL reg-•	
ister (indirect jump to the address pointed by PCLATH and PCL), 
the 8 least significant bits of the PC are loaded with the result of 
the instructions, while the 5 most significant bits of the PC are 
loaded with the 5 least significant bits of the PCLATH register as 
shown in Figure 3.8a.
When executing a goto or call instruction, the 11 least significant •	
bits of the PC come from the instruction, while the 2 most signifi-
cant bits are loaded from bits 4 and 3 in PCLATH as shown in fig-
ure 3.8b. These 2 most significant bits indicate the page number.

12 11 10 9 8 7

Page
number

Displacement

PCL

PC

PCLATH4 3

0

Figure 3.7 
Program counter (PC) and other components in a program memory address: page number 
(2 bits) and displacement (11 bits). The page number is loaded from bits PCLATH<4:3>. The 
8 least significant bits in the PC make up the register PCL. PCLATH and PCL are special 
function registers located in the microcontroller’s data memory.



Memory in Microcontrollers	 47

When executing a return instruction from a subroutine, the 13 bits •	
in the PC are loaded from the top of the stack. PCLATH is not 
used in this case.

If the program is longer than 1 page, it is necessary to be very careful 
with the jumps between pages and calls to subroutines stored in a dif-
ferent page. It is then necessary to update bits PCLATH <4:3> correctly 
before changing pages.

3.2.1.2  Reading and Writing the Program Memory

The instruction set in medium-end PIC microcontrollers does not have a 
specific instruction to read its program memory. This means that program 
memory can only be used to store instructions but not data. However, in 
some applications it can be very useful to have data permanently stored in 
this memory, such as tables and text created using ASCII characters. For 
this reason, some medium-end PIC microcontrollers allow indirect read of  
program memory. This is done by using special function registers in the 
data memory. Moreover, some PIC microcontrollers using flash memory 

(a)

(b)

12 11 10 9 8 7

Page
number

Displacement

PCL

PC

PCLATH Instruction result
(8 bits)

4 3 2 1 0

0

Page
number

Displacement

12 11 10 7

PCL

PC

PCLATH4 3

0

11-bit displacement from the
goto or call instruction

Figure 3.8 
Program counter (PC) and special function registers PCLATH and PCL. Figure shows the 
results when (a) executing an instruction whose destination is the PCL or (b) executing a 
goto or call instruction.



48	 Microcontrollers: Fundamentals and Applications with PIC

also allow writing of data in the program memory using a similar indirect 
approach. Examples of these devices are PIC16C781 and PIC16C782, which 
allow the indirect reading of program memory, and the PIC16F87x family, 
which allows writing and reading of flash program memory.

Table 3.3 shows the special function registers used in reading or read-
ing/writing program memory. The registers PMDATH:PMDATA or 
EEDATH:EEDATA are used to read or write the 14-bit data. The regis-
ters PMADRH:PMADR or EEADRH:EEADR are used for the 13-bit data 
address, and the registers PMCON1 or EECON1 and EECON2 are the con-
trol registers.

The procedure for reading program memory is to:

	 1.	Write the address of the cell to read in the special function reg-
isters PMADRH:PMADR or EEADRH:EEADR depending on the 
type of device used. In PICs that allow writing and reading of pro-
gram memory, it is necessary to set the bit EEPGD to 1 in register 
EECON1. This indicates that program memory will be accessed 
instead of the EEPROM data memory.

	 2.	Set the bit RD in the register PCON1 (or EECON1) to 1. This initi-
ates the reading process. Reading takes two instruction cycles, in 
which, although PC is increased in two cycles, there is no instruc-
tion fetching. For this reason, it is necessary to put two additional 
instructions after setting bit RD to 1, although these two instruc-
tions will not be executed. The best option is to place the nonop-
eration instruction (nop).

	 3.	Once the reading operation is complete, the bit RD is set to 0 auto-
matically. Also, the bit EEIF in the register PIR2 is set to 1, thus 
indicating the end of the reading operation.

	 4.	The registers PMDATH:PMDATA or EEDATH:EEDATA contain 
the data in the original cell that was read.

Table 3.3

Special Function Registers (SFRs) Used in Reading or Reading/Writing into 
Program Memory in PICs That Allow It

SFR in Devices That Only Allow Reading 
Program Memory

SFR in Devices That Allow Reading 
and Writing Program Memory

PMADRH Address (13 bits): 
PMADRH:PMADR 

EEADRH Address (13 bits): 
EEADRH:EEADRPMADR EEADR

PMDATH Data (14 bits): 
PMDATH:PMDATA

EEDATH Data (14 bits): 
EEDATH:EEDATAPMDATA EEDATA

PMCON1 Control EECON1 Control

EECON2



Memory in Microcontrollers	 49

Example 3.1

The following is a segment of program code that shows how to read program 
memory in a PIC16F873 microcontroller. This specific microcontroller allows 
writing and reading into its program memory.

			   bsf		  STATUS, RP1			  ; Select bank 2.
			   bcf		  STATUS, RP0			  ;
			   movf		  ADDR_H, W			   ; Write address in
			   movwf		 EEADRH				    ; EEADRH:EEADR.
			   movf		  ADDR_L, W			   ;
			   movwf		 EEADR					    ;
			   bsf		  STATUS, RP0			  ; Select bank 3.
			   bsf		  EECON1, EEPGD		 ; Select program memory.
			   bsf		  EECON1, RD			  ; Start reading operation.
			   nop								        ; Sequence of 2 nop required.
			   nop
			   bcf		  STATUS, RP0			  ; Select bank 2 as
												            ; data is ready in EEDATH:EEDATA.
			   movf		  EEDATH, W			   ; Read data.
			   movwf		 DATA_H				    ;
			   movf		  EEDATA, W			   ;
			   movwf		 DATA_L				    ;

The program takes the address of the program memory cell from registers 
ADDR_H:ADDR_L and places it in EEADRH:EEADR using the W register as an 
intermediate step. Reading starts by setting to 1 the bit RD in EECON1. Because 
the reading process takes two instruction cycles, it is necessary to use two nop 
operations. Finally, the data being read is taken from the special function regis-
ters EEDATH:EEDATA and is placed in registers DATA_H:DATA_L.

It is necessary to select the appropriate bank before accessing the special 
function registers. This selection is done with bits RP1, RP0 from the SFT 
STATUS.

In read-only devices it is necessary to use the special function registers PM 
and remove the instruction bsf EECON1, EEPGD.

The following is the procedure used to write data into the flash pro-
gram memory:

	 1.	Write the address of the cell in the special function reg-
ister EEADRH:EEADR. Write the data to be written in 
EEDATH:EEDATA.

	 2.	Set the bit EEPGD in the EECON1 register to 1 to indicate that 
the writing will occur in the program memory instead of in the 
EEPROM data memory.

	 3.	Set the bit WREN in the special function register EECON1 to 1 to 
enable writing into the program memory.

	 4.	Disable all interrupts.

	 5.	Write 55h to EECON2.



50	 Microcontrollers: Fundamentals and Applications with PIC

	 6.	Write AAh to EECON2.
	 7.	Set the bit WR in ECON1 to 1. This will start the writing process 

that will occur in the next two instruction cycles.
	 8.	Write two nonoperation instructions (nop) in the program.
	 9.	Set the bit WREN in SFR EECON1 to 0 to disable writing in the flash 

memory. This prevents accidental writing in the program memory.
	 10.	At the end of the writing cycle, the bit WR in EECON1 is auto-

matically set to 0. The bit EEIF in SFR PIR2 is set to 1 indicating 
the end of writing.

	 11.	Enable interrupts.

Steps 5 to 7 are a set of five instructions that need to be executed without 
being interrupted. Step 10 is a safety measure to avoid accidentally writ-
ing undesired data in the program memory.

Example 3.2

The following is a segment of program code that shows the recommended pro-
cedure to write in the flash memory for a PIC16F873 microcontroller.

			   bsf		  STATUS, RP1			  ; Select bank 2.
			   bcf		  STATUS, RP0			  ;
			   movf		  ADDR_H, W			   ; Write address in
			   movwf		 EEADRH				    ; EEADRH:EEADR.
			   movf		  ADDR_L, W			   ;
			   movwf		 EEADR					    ;
			   movf		  DATA_H, W			   ; Write data in
			   movwf		 EEDATH				    ; EEDATH:EEDATA.
			   movf		  DATA_L, W			   ;
			   movwf		 EEDATA				    ;
			   bsf		  STATUS, RP0			  ; Select bank 3.
			   bsf		  EECON1, EEPGD		 ; Select program memory and
			   bsf		  EECON1, WREN		  ; Enable writing into FLASH memory.
			   bcf		  INTCON, GIE			  ; Disable all interrupts.
			   movlw		 55h					     ; Required sequence.
			   movwf		 EECON2				    ;
			   movlw		 AAh					     ; Required sequence.
			   movwf		 EECON2				    ;
			   bsf		  EECON1, WR			  ; Start write operation.
			   nop								        ; Required sequence while
			   nop								        ; writing in memory.
			   bcf		  EECON1, WREN		  ; Disable memory write.
			   bsf		  INTCON, GIE			  ; Enable interrupts (optional).

It is necessary to select the appropriate bank before accessing the special 
function registers. This selection is done with bits RP1 and RP0 from the SFT 
STATUS. The bit GIE in the SFR INTCON enables or disables the interrupts.



Memory in Microcontrollers	 51

3.2.2 R AM Data Memory

In PIC microcontrollers, the data memory implemented using RAM tech-
nology is organized in 8-bit words. Similar to program memory, data 
memory is also divided in different pages; for data memory these pages 
are called banks. Each bank can have up to 128 memory cells or registers. 
The range of addresses for each bank is from 00h to 7Fh.

All medium-end PICs have at least two memory banks. This gives them 
up to 256 registers with absolute addresses ranging from 00h to FFh. Some 
devices have up to four memory banks, thus giving a total of 512 reg-
isters with absolute addresses ranging from 000h to 1FFh as shown in 
figure 3.9.

Data memory registers can be classified as special function registers 
(SFRs) or general purpose registers (GPRs). SFRs are used to control the 
PIC and access its peripheral modules. GPRs make up the data memory 
available to the user. The size of SFRs and GPRs is dependent on the type 
of PIC used. Figures  3.10 and 3.11 show the data memory registers for 
the microcontrollers PIC16F84 and PIC16F873, respectively. The PIC16F84 
has 14 FSRs and 68 GPRs. The PIC16F873 has 50 SFRs and 192 GPRs. It is 
important to note that to ease the writing of the program, it is possible to 
access most of the special function registers from any memory bank.

3.2.2.1  Addressing Data Memory

The address of a memory cell needs 9 bits. Due to the paging system used, 
bits 8 and 9 indicate the bank number and bits 6 to 0 indicate the address 
within that bank (displacement), as shown in Figure 3.12. The two bits that 
identify the bank come from the STATUS special function register. The 
displacement can be located either in the instruction (direct addressing) 
or in the special function register FSR (indirect addressing).

Either direct or indirect addressing can access all registers in the data 
memory as shown in Figure 3.13. When using direct addressing, the bank 

0
Bank 0 1 2 3

7Fh

SFR

GPR

7 0

80h

FFh

SFR

GPR

SFR

GPR

7 0

100h

17Fh

SFR

GPR

180h

1FFh
7 0 7 0

Figure 3.9 
Data memory paging in medium-end PIC microcontrollers. They can have up to four banks 
with 128 registers in each one, for a total of 512 registers. Each bank contains special func-
tion registers (SFRs) and general purpose registers (GPRs). Each register is 8 bits long.



52	 Microcontrollers: Fundamentals and Applications with PIC

is selected with RP1 and RP0 that are bits 6 and 5 in the special func-
tion register STATUS. The instruction handles the 7-bit displacement that 
can range from 00h to 7Fh. For microcontrollers with only two memory 
banks, the bit RP1 can be ignored.

When using indirect addressing, the 8 least significant bits for the 
address come from the file select register (FSR). The ninth bit is IRP 
(Indirect Register Pointer bit), which is bit 7 in the STATUS register. In this 
case, the 8-bit displacement is in the FSR register. In microcontrollers with 
only two memory banks, IRP needs to be kept at 0. In microcontrollers 
with four memory banks, IRP = 0 selects banks 0 and 1; IRP = 1 selects 
banks 2 and 3. For indirect addressing the data memory can be seen as 

00h
Bank 0

INDF(*)
TMR0
PCL

STATUS
FSR

PORTA
PORTB

EEDATA
EEADR

PCLATH
INTCON

68
GPR

01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch

4Fh
50h

7Fh

Not built cells will read as 0
(*) Not a physical register

80h
Bank 1

INDF(*)
OPTION

PCL
STATUS

FSR
TRISA
TRISB

EECON1
EECON2(*)

PCLATH
INTCON

GPR
mapped in

bank 0

81h
82h
83h
84h
85h
86h
87h
88h
89h
8Ah
8Bh
8Ch

CFh
D0h

FFh

Figure 3.10 
Data memory registers in the PIC16F84 microcontroller. These are organized in two banks 
with 68 general purpose registers (GPRs) that can be accessed from any bank, and 14 special 
function registers (SFRs). Some SFRs such as STATUS, PCLATH, PCL, FSR, and INTCON 
can be accessible from any bank. The first cell in each bank (INDF) is used for a data indi-
rect address and it is not a real register in the microcontroller.



Memory in Microcontrollers	 53

Bank 0
INDF(*)
TMR0
PCL

STATUS
FSR

PORTA
PORTB
PORTC

PORTD(1) TRISD(1)
TRISE(1)
PCLATH

PORTE(1)
PCLATH
INTCON

PIR1
PIR2

TMR1L
TMR1H
T1CON
TMR2

T2CON
SSPBUF
SSPCON
CCPR1L
CCPR1H

CCP1CON
RCSTA
TXREG
RCREG
CCPR2L
CCPR2H

CCP2CON
ADRESH
ADCON0

96
GPR

Not built cell will read as 0 (1) Not used in PIC16F873
(2) Reserved(*) Not a physical register

80h
Bank 1

INDF(*)
OPTION

PCL
STATUS

FSR
TRISA
TRISB
TRISC

INTCON
PIE1
PIE2

PCON

SSPCON2
PR2

SSPADD
SSPSTAT

TXSTA
SPBRG

ADRESL
ADCON1

96
GPR

81h
82h
83h
84h
85h
86h
87h
88h
89h
8Ah
8Bh
8Ch
8Dh
8Eh
8Fh
90h
91h
92h
93h
94h
95h
96h
97h
98h
99h
9Ah
9Bh
9Ch
9Dh
9Eh
9Fh
A0h

FFh

PCLATH

100h
Bank 2

INDF(*)
TMR0
PCL

STATUS
FSR

PORTB

INTCON
EEDATA
EEADR

EEDATH
EEADRH

GPR
mapped in

bank 0

101h
102h
103h
104h
105h
106h
107h
108h
109h
10Ah
10Bh
10Ch
10Dh
10Eh
10Fh
110h

11Fh
120h

17Fh

PCLATH

180h
Bank 3

INDF(*)
OPTION

PCL
STATUS

FSR

TRISB

INTCON
EECON1
EECON2

(2)
(2)

GPR
mapped in

bank 1

181h
182h
183h
184h
185h
186h
187h
188h
189h
18Ah
18Bh
18Ch
18Dh
18Eh
18Fh
190h

19Fh
1A0h

1FFh

Figure 3.11 
Data memory registers for the PIC16F873. These are organized in four banks having 192 
general purpose registers and 50 special function registers.



54	 Microcontrollers: Fundamentals and Applications with PIC

paged into two banks, each one with 256 addresses, instead of the four 
banks with 128 addresses as used in direct addressing.

3.2.2.2  Special Function Registers (SFRs)

SFRs are registers located in the data memory with specific information 
or control functions for the microcontroller or its peripherals. The SFRs 
associated with the core of the microcontrollers are common among the 
different devices. On the other hand, the SFRs associated with peripherals 
are strongly dependent on those peripherals.

Table  3.4 shows the SFRs associated with the different functions and 
peripherals in medium-end PIC microcontrollers. The STATUS, PCLATH, 
PCL, FSR, OPTION, INTCON, PORTA, PORTB, TRISA, TRISB, and TMR0 
registers are common to most of them.

3.2.2.2.1  The STATUS Register

The STATUS register contains the bits associated to arithmetic operations 
as well as the bits for selecting the banks of memory. It also contains two 

9 bits

Bank Displacement

2 bits 7 bits

Figure 3.12 
Data memory address components. Nine bits are required: the 2 most significant bits indi-
cate the bank number and the 7 least significant bits indicate the displacement or address 
within the bank.

Direct addressing Indirect addressing

STATUS
RP1 RP0

STATUS
IRP 7

Banks
00 01 10 11

0

7Fh

FSR 06

Instruction
displacement (7 bits)

0

Figure 3.13 
Data memory addressing. All memory registers can be accessed using direct or indirect 
addressing.



Memory in Microcontrollers	 55

bits that indicate the state of the watchdog timer and the low-power mode. 
It is possible to access the STATUS register from any memory bank. This 
register is present in all the memory banks because it is used to select the 
banks, and therefore needs to be accessible from any bank. Figure  3.14 
shows the bits in the STATUS register.

IRP: This bit selects the memory bank in indirect addressing. IRP = 0 
selects banks 0 and 1. IRP = 1 selects banks 2 and 3.

Table 3.4

Special Function Registers (SFRs) Associated with the Microcontroller or Its 
Peripheral

Function or Device SFR

Select memory bank. Indicators related to 
arithmetic and logic operations. 
Watchdog timer overflow. Low-power 
indication.

STATUS

Prescaler value. Edge for clock pulses. 
Edges for external interrupt requests. 
Internal pull-up for port B.

OPTION

Memory parity error indicators. Type of 
reset. Low-power.

PCON

Program counter PCLATH, PCL

Indirect addressing FSR

Interrupts INTCON

PIR1, PIE1

PIR2, PIE2

Parallel ports PORTA, TRISA

PORTB, TRISB

PORTC, TRISC

PORTD, TRISD

PORTE, TRISE

Timer0 TMR0, OPTION, INTCON

Timer1 TMR1H, TMR1L, T1CON, PIR1

Timer2 TMR2, PR2, T2CON, PIR1

Modules CCPx (x = 1, 2, 3) CCPRxH, CCPRxL,

CCPxCON

Serial port USART or SCI TXREG, TXSTA, RCREG, RCSTA

Synchronous serial port SSP SSPSTAT, SSPCON, SSPBUF, SSPADD

A/D converter ADRESH, ADRESL, ADCON0, ADCON1

EEPROM data memory and program 
flash memory

EEADRH, EEADR, EEDATH, EEDATA, 
EECON1, EECON2



56	 Microcontrollers: Fundamentals and Applications with PIC

RP1, RP0: These bits are used to select the banks in direct memory 
addressing: 00 = bank 0; 01 = bank 1; 10 = bank 2; 11 = bank 3.

TO#: This bit indicates the state of the WDT. When TO = 0 it means 
that the WDT had overflow. TO is set to 1 with a power-on reset 
as well as with the instructions clrwdt and sleep.

PD#: Indication of low-power mode or power-down. This bit is set 
to 0 when the microcontroller enters a low-consumption mode as 
a result of the instruction sleep. It is set to 1 with the instruction 
clrwdt as well as with a power-on reset.

Z: Zero indicator. Z = 1 indicates that the result of an arithmetic or 
logic operation was zero. Otherwise, Z = 0.

DC: Digit carry bit. DC = 1 when there is a carry over between bits 
3 and 4 in binary addition. Otherwise DC = 0. In a subtraction 
operation DC = 0 if there is borrowing between bits 4 and 3 and 
DC = 1 when there is no borrowing.

C: Carry bit. C = 1 when there is carry over between bits 7 and 8 in 
binary addition. Otherwise DC  =  1. In a subtraction operation, 
C = 0 when there is borrowing between bits 8 and 7 and C = 1 
when there is no borrowing.

As with any other register, the STATUS register can be the destination 
for any instruction. In this case it is necessary to keep in mind that the 
resulting value in this register may be different from the value it intended 
to write because the bits TO# and PD# are read-only bits and therefore 
can not be written by the program. The bits Z, DC, and C will be set to the 
appropriate values according to the instruction logic instead of the values 
that the instruction is supposed to write.

For example, the instruction clrf STATUS will not put 00h in STATUS 
but will leave TO# and PD# unmodified. Also, bits DC, C, and Z will 
remain unchanged at 1 according to the logic of this instruction. 
Therefore, the resulting value in STATUS will be 000uu1uu (with u mean-
ing “unchanged” bit).

STATUS

7 6 5 4 3 2 1 0
IRP RP1 RP0 T0# PD# Z DC C

R/W-0 R/W-0 R/W-0 R-1 R-1 R/W-x R/W-x R/W-x

(address 03h in any bank)

Figure 3.14
STATUS register. This register can be accessed at address 03h from any data memory bank. 
This figure shows the values of the bits in this register after a reset. It also shows which bits 
are read/write (R/W) and which bits are read-only (R).



Memory in Microcontrollers	 57

To modify the bits of the STATUS register it is recommended to use 
instructions that do not change bits Z, DC, or C, such as the instructions 
bcf, bsf, swapf, and movwf.

3.2.2.2.2  The OPTION Register

The OPTION register (also known as OPTION_REG) contains the bits to 
control additional functions related to enabling the internal pull-up in 
port B, the edge for recognizing external interrupts, the source of pulses 
for Timer0, the selection of prescaler for Timer0, and the watchdog timer. 
Figure 3.15 shows the OPTION register.

RBPU#: Internal pull-up in port B. RBPU# = 1 disables the internal 
pull-up in port B. With RBPU# = 0, the pull-ups for each bit in port 
B can be enabled individually.

INTEDG: Edge for external interrupt. With ENTEDG = 1, the exter-
nal interrupt is produced with the rising edge of the signal; when 
this bit set to 0, it happens with the falling edge of the signal.

T0CS: Selection of clock source for Timer0. This bit selects the 
source for the pulses in Timer0. T0CS = 1 selects the pulses in pin 
T0CK1 as the source of pulses. T0CS = 0 selects the internal clock 
(divided by 4).

T0SE: Selects edge in Timer0 clock. T0SE  =  1 increments Timer0 
with the raising edge and T0SE = 0 increments Timer0 with the 
falling edge.

PSA: Prescaler assignment. PSA = 1 assigns the prescaler to WDT. 
PSA = 0 assigns the prescaler to Timer0.

PS2, PS1, PS0: Bits to select the prescaler:

R/W-1
RBPU# INTEDG T0CS T0SE PSA PS2 PS1 PS0

7 6 5

OPTION
(address 01h in banks 1 and 3)

4 3 2 1 0

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

Figure 3.15 
OPTION register. The figure shows the values of the bits in this register after a reset. All the 
bits are read/write bits (R/W).



58	 Microcontrollers: Fundamentals and Applications with PIC

PS2 PS1 PS0

Division with 
Prescaler 

Assigned to 
Timer0

Division with 
Prescaler 

Assigned to 
WDT

0 0 0 2 1
0 0 1 4 2
0 1 0 8 4
0 1 1 16 8
1 0 0 32 16
1 0 1 64 32
1 1 0 128 64
1 1 1 256 128

3.2.3 EE PROM Data Memory

Most of the medium-end PICs that use flash memory also include up to 
256 bytes of non-volatile memory for data or EEPROM data. This mem-
ory is physically separated from the RAM data memory. This memory is 
accessed by special function registers, similar to those used to read and 
write in the program flash memory. Table 3.5 shows these registers and 
their function in handling EEPROM data memory.

The procedure to read data stored in the EEPROM memory is as follows:

	 1.	Write the address of the memory cell to be read in the EEADR.
	 2.	Set the bit EEPGD in the register EECON1 to 0. This indicates the 

access to EEPROM data memory instead of the program memory.
	 3.	Set the bit RD in the register EECON1 to 1. This starts the reading 

process. Data will be available in the register EEDATA in the next 
instruction cycle.

	 4.	Once the reading operation has finished, bit RD is automatically 
set to 0. Also, bit EEIF in register PIR2 is set to 1, thus indicating 
the end of the reading operation.

Table 3.5

Special Function Registers Used for EEPROM Data 
Memory Operations

Register Function

EEADR Contains data address (8 bits)

EEDATA Contains the data (8 bits)

EECON1 Control

EECON2



Memory in Microcontrollers	 59

Example 3.3

The following is a segment of program code that shows the recommended 
procedure to read a cell in the EEPROM data memory in a PIC16F873 
microcontroller.

			   bsf		  STATUS, RP1		  ; Select bank 2.
			   bcf		  STATUS, RP0		  ;
			   movf		 ADDR, W				   ; EEPROM address is in ADDR.
			   movwf	 EEADR				    ; and is placed in EEADR.
			   bsf		  STATUS, RP0		  ; Select bank 3.
			   bcf		  EECON1, EEPGD	 ; Select data memory.
			   bsf		  EECON1, RD		  ; Start reading operation.
			   bcf		  STATUS, RP0		  ; Select bank 1 as data is ready
			   movf		 EEDATA, W			  ; in EEDATA. Move it to W.

The program takes the address of the cell in the EEPROM memory that is in 
the register ADDR and places it in EEADR using the W register as an intermedi-
ate step. Reading starts by setting to 1 the bit RD in EECON1. The data being 
read is taken from the special function register EEDATA and is placed in the W 
register. Before accessing any register, it is necessary to select the appropriate 
bank by means of the bits RP1 and RP0 in the SFR STATUS.

The procedure to write data in a cell in the EEPROM data memory is 
as follows:

	 1.	Write the address of the memory cell in the special function reg-
ister EEADRH and the data to be written in EEDATA.

	 2.	Set the bit EEPGD in the EECON1 register to 0. This indicates that 
the EEPROM data memory will be accessed instead of the pro-
gram flash memory.

	 3.	Set the bit WREN in SFR EECON1 to 1 in order to enable writing 
in the EEPROM data memory.

	 4.	Disable all interrupts.
	 5.	Write 55h in EECON2.
	 6.	Write AAh in EECON2
	 7.	Set the bit WR in SFR ECON1 to 1. This begins the writing pro-

cess. This process takes place during the following two instruc-
tion cycles.

	 8.	Set the bit WREN in SFR EECON1 to 0 to disable accidental writ-
ing in the EEPROM data memory.

	 9.	Once the writing process is finished, the bit WR in EECON1 is 
automatically set to 0. The bit EEIF in SFR PIR2 is set to 1. This 
indicates that the reading process has finished.

	 10.	Enable interrupts.



60	 Microcontrollers: Fundamentals and Applications with PIC

Steps 5 to 7 are a set of five instructions that need to be executed without 
being interrupted. Step 10 is a safety measure to avoid writing undesired 
data in the program memory accidentally.

Example 3.4

The following is a segment of program code that shows the recommended pro-
cedure to write in the EEPROM memory for a PIC16F873 microcontroller.

			   bsf		  STATUS, RP1		  ; Select bank 2.
			   bcf		  STATUS, RP0			  ;
			   movf		  ADDR, W				    ; Write address in
			   movwf		 EEADR					    ; EEADR.
			   movf		  DATA, W				    ; Write data in
			   movwf		 EEDATA				    ; EEDATA.
			   bsf		  STATUS, RP0			  ; Select bank 3.
			   bcf		  EECON1, EEPGD		 ; Select EEPROM data memory.
			   bsf		  EECON1, WREN		  ; Enable memory write.
			   bcf		  INTCON, GIE			  ; Disable interrupts.
			   movlw		 55h					     ; Required sequence.
			   movwf		 EECON2
			   movlw		 AAh					     ; Required sequence.
			   movwf		 EECON2
			   bsf		  EECON1, WR			  ; Start write operation.
			   bcf		  EECON1, WREN		  ; Disable memory writing.
  wait_time:
			   btfsc		 EECON1, WR			  ; ¿WR = 0 ?if yes, continue.
			   goto		  wait_time			   ; if not, continue waiting.
			   bsf		  INTCON, GIE			  ; Enable interrupts (optional)

It is necessary to select the appropriate bank before accessing the special 
function registers. This selection is done with bits RP1 and RP0 from the SFT 
STATUS. The bit GIE in the SFR INTCON enables or disables the interrupts.



61

4
Instruction Set and Assembler 
Language Programming

This chapter describes the processes for designing and writing programs 
in assembler language for PIC microcontrollers. The chapter starts by 
describing basic concepts such as machine language, assembler language, 
and source and object codes. It continues by explaining the instruction 
set in medium-end PIC microcontrollers, using several examples to show 
the reader how these instructions are used. Finally, this chapter describes 
available resources for developing programs in assembler language using 
a personal computer.

4.1  Basic Concepts

4.1.1  Machine Code and Assembler Language

All microprocessors and microcontrollers execute their instructions 
by using their own machine language. Machine language is made of the 
binary codes that describe the instructions for the device to execute. It is 
a language made of 1s and 0s. For example, because each instruction in 
medium-end PIC microcontrollers has 14 bits, a program in machine lan-
guage for these microcontrollers consists of 14-bit words.

Obviously, the development of programs in machine language can be 
extremely difficult. To ease the task of writing code at this “low level,” 
assembler language was developed. Assembler language consists of mne-
monic symbols that represent the corresponding machine language bits.

Example 4.1

The instruction “set W register to 0” is represented in machine language as:

00 0001 0xxx xxxx

with x being 0 or 1 indistinctly.



62	 Microcontrollers: Fundamentals and Applications with PIC

The same operation in assembler language is represented using the mne-
monic clrw (clear W register), thus making assembler language much easier to 
work with compared to machine language.

Example 4.2

The instruction “store the value K in register W” with K being an 8-bit binary 
number is represented in machine language as:

11 00xx kkkk kkkk

where k are the binary digits of K and x could be indistinctly 0 or 1.
In assembler language the instruction “store an 8 bit data in the W register” 

is represented by the mnemonic movlw (move literal to W). Therefore, the 
complete instruction becomes:

		  movlw K

This instruction is much easier to work with than machine language.

Both, machine and assembler languages are highly dependent on 
each family of microprocessors or microcontrollers. Each type of micro-
controller has its own assembler language, normally different from the 
assembler language in another type of microcontroller. Medium-end PICs 
have an assembler language with 35 instructions.

Microcontrollers cannot directly execute a program written in assem-
bler language. It is necessary to “translate” this language into machine 
language. This process is called assembly and it is done by a program 
called an assembler, although some additional programs may also inter-
vene. The original program written in assembler language is called 
source code and the code after the assembling process is called object 
code. This assembling process is normally carried out by a personal 
computer. There are several methods to obtain machine code from the 
source code written in assembler language. The way the assembler oper-
ates depends on how the source code was written, and in particular it 
is dependent on whether the source code contains the real addresses 
for storing instructions and data. If the source code specifies the real 
addresses of data and instructions (direct addresses), then the assem-
bler generates absolute object code; otherwise, the assembler generates 
relative object code also known as relocatable code. Figure  4.1 illustrates 
these two assembly modes.

When the source code contains all the information needed to translate 
the program into machine language, that is, if it contains the real data 
and instruction addresses, as well as the addresses they will occupy in 
memory, the assembler can directly generate the object code. This method 
of producing programs that can be directly coded by the assembler is only 



Instruction Set and Assembler Language Programming	 63

useful when the program is short and simple. Otherwise this way of pro-
gramming is not flexible or practical.

Larger projects require a modular approach. This is done by developing 
programs for each separate module and then linking them all together 
to create the object code. When writing the programs for each separate 
module, it is useful not to indicate the direct memory addresses to store 
instructions or data. With this, the assembler can only create a partial or 
indirect code because it does not have the real memory addresses where 
information will be stored. In this case, an additional program called a  
linker is needed. The linker takes the different modules that have been 
created, sets the real addresses in memory for instructions and data by 
linking all the modules, and finally creates the code object program in 
machine language.

The use of a linker introduces additional flexibility and increase of 
power in the process of writing programs for microcontrollers; it also 
requires writing them in a manner different from how they would be 
written when creating absolute object code. The linker also provides 
the advantage of allowing the use of modules written in different lan-
guages such as C and assembler. Some of these modules may constitute 
a program library. For example, one specific module can contain all 
the subroutines used for floating point arithmetic operations. When 
linking this module with the rest of the modules, the linker will only 
take from the whole library the subroutines that are required for that 

(a)

(b)

Source
code

Assembler
Partially
coded

program

Other
modules

Linker
Machine
language
program

To programmer
for

microcontroller

Source
code Assembler

Machine
language
program

To programmer
for

microcontroller

Figure 4.1 
Process for translating a program written in assembler into machine language. In (a) the 
assembler directly generates the object program in machine language. In (b) the assem-
bler partially codifies the source code program, and the linker generates the object code in 
machine language through the different modules.



64	 Microcontrollers: Fundamentals and Applications with PIC

program to create the object code. All this contributes to increase 
the flexibility and power of the modular approach for programming 
microcontrollers.

4.1.2  Structure of Instructions

The instructions in any microprocessor or microcontroller have two com-
ponents: the operation code and the operands. The operation code contains 
the order for the microcontroller to execute the operation described by the 
instruction. The operands are the data needed in carrying out the instruc-
tion. Operands can be addresses or data. The operands for medium-range 
PIC microcontrollers can be:

A 7-bit address in the data memory•	
An 11-bit address in the program memory•	
An 8-bit data•	
A 3-bit address of a bit register in the data memory•	
The 1-bit indication of whether the result of the instruction will be •	
placed in the working (W) register or in the data memory

In general, some instructions may not require operands, whereas other 
instructions may require more than one operand. Medium-end PIC micro-
controllers have instructions with no operands and instructions with one 
or two operands. Figure 4.2 illustrates different possible cases for instruc-
tions using one or two operands. These can be:

Instructions that carry out operations using registers in the data •	
memory have two operands. One operand is the 7-bit register 
address. The second operand is the bit that indicates whether the 
destination of the result will be stored in the W register or in the 
register indicated in the original instruction.
Instructions that include an 8-bit data in the instruction only need •	
this data as an operand.
Instructions that include the 11-bit program memory address •	
have this address as their only operand.
Instructions that carry out operations with the bits in the data •	
memory need two operands. One operand is the address of the 
bit within the register. The second operand is the 7-bit address for 
the register in the data memory.

All the instructions in medium-end PIC microcontrollers are 14  bits 
long. This is also the length of the cells in the program memory and there-



Instruction Set and Assembler Language Programming	 65

fore each instruction can be stored in a single memory cell. This structure 
is commonly used in RISC microprocessors and microcontrollers.

4.1.3  Data Addressing Modes

Data addressing modes refers to the different ways in which data can be 
addressed within an instruction. When writing an instruction, data can 
be referred to in two ways: in the instruction itself (as an operand) or 
through its specific address in data memory.

The modes for data addressing are strongly dependent on the architec-
ture of the device. In the simplest form, data addressing can be either in 
the instruction or in a register. This is the approach used in medium-end 
PIC microcontrollers. The register that stores data addresses is generically 
called the data address register. There are three basic modes to refer data: 
with data in the instruction, with the data address in the instruction, and 
with the address for the data in the data address register. Therefore, there 
are three possible modes to addressing data: immediate addressing, direct 
addressing, and indirect addressing.

13
OC d

(a)

(b)

(c)

(d)

f
8 7 6 0

13
OC k

8 7 0

13
OC a

1110 0

13
OC b f

10 9 7 6 0

Figure 4.2
Format of instructions in medium-end PIC microcontrollers. Instructions have operation 
codes from 3 to 6 bits with up to two operands. (a) Format for instructions that work with 
data memory registers. (b) Instructions that work with 8-bit immediate data. (c) Instructions 
containing program memory addresses. (d) Instructions for manipulating a specific bit in 
a data memory register. OC, operation code; f, 7-bit address of a register in data memory; k, 
8-bit data; a, 11-bit address; b, number of bit (0 to 7); d, destination of result: if d = 0, destina-
tion is W and if d = 1 destination is f.



66	 Microcontrollers: Fundamentals and Applications with PIC

In immediate addressing, the data is part of the instruction. In this case, 
the instruction operand is the data itself. In direct addressing, the address 
of the data is part of the instruction. In this case, the instruction operand 
is the data address. In indirect addressing, the instruction takes the data 
address from the data address register. In this case, the instruction oper-
and is the address of the data address register.

In medium-end PIC microcontrollers the data address register is its file 
select register (FSR). All data memory registers in medium-end PIC micro-
controllers can be accessed by using direct or indirect addressing. When 
using these addressing methods it is necessary to remember that memory 
is organized in banks. Therefore, the first step is to select the bank that 
contains the register of interest. Banks are selected using bits IRP, RP1, 
and RP0 in the special function register STATUS as shown in figure 3.13. 
When using direct addressing, the bank is selected with bits RP1 and RP0. 
When using indirect addressing, the banks are selected with IRP and the 
most significant bit in the FSR. The FSR needs to contain the address of the 
register to be addressed. Data is read or written in the register pointed to 
by the FSR when the data is read or written in the register INDF (Indirect 
File).

The following examples illustrate direct and indirect addressing in 
medium-end PICs.

Example 4.3

Given a PIC16F84, store the data 0x35 in the W register.
Solution: movlw 0x35. This uses immediate addressing as the data is con-

tained in the instruction itself.

Example 4.4

Given a PIC16F873 microcontroller, place the value 0x35 in the register 0x20 
of bank 1. Do this task using direct and indirect addressing.

Solution using direct addressing: Bank 1 will be selected first and then the 
data will be written in the register using an instruction that has the register 
address (0x20) as an operand:

		  bcf	 STATUS, RP1		 ; Select bank 1.
		  bsf	 STATUS, RP0
		  movlw	0x35				    ; Place the value 0x35 in W and
		  movwf	0x20				    ; copy it in the register whose address is 0x20
									         ; in the selected bank.

Solution using indirect addressing: Bank 1 is selected with IRP = 0 and placed 
in the FSR the register address (0x20) with the most significant bit in the FSR 
equal to 1, that is, 0xA0. The data 0x35 is placed in the register pointed to by 
FSR when the instruction that writes in INDF is executed.



Instruction Set and Assembler Language Programming	 67

		  bcf	 STATUS, IRP		 ; Select banks 0 and 1.
		  movlw	0xA0				    ; Place the register address in W and
		  movwf	FSR				    ; copy it to FSR.
		  movlw	0x35				    ; Place 0x35 in W and
		  movwf	INDF				    ; copy it in the register pointed to by FSR,
									         ; indicated by writing in INDF.

4.1.4  The Stack

The stack is a data storage structure using a last in, first out (LIFO) 
approach: the last data entering the stack is the first data leaving the stack. 
The stack has a base and a top. The base of the stack is the oldest data 
inside, and the top of the stack is the newest data. When the stack contains 
multiple data, all the storage or retrieve operations are carried over the 
top of the stack. The depth of the stack is the size of the stack in a given 
moment. In most microprocessors and microcontrollers, the stack is a part 
of the data memory, giving the stack a practically unlimited size. These 
devices have a stack pointer (SP) register that contains the address of the 
top of the stack. Storing or retrieving data modifies the SP. For example, 
when storing data in the stack, its SP increases; whereas when retrieving 
data from the stack, its SP decreases. Figure 4.3 shows the general struc-
ture of the stack in a microprocessor or microcontroller.

The stack is used to store instruction addresses and in particular to 
“remember” the address to return to the main program from a subrou-
tine. When a call or similar instruction calls a subroutine, the value of 
the program counter (PC) is stored in the stack. The PC is the address to 
which the program must return once it has finished executing the subrou-
tine. When the subroutine ends with the instruction return or by using 

Store

Retrieve

SP
STACK

Top

Bottom

DIR1
DIR2
DIR3

...

...

...

...

...

Figure 4.3 
General structure of the stack in a microprocessor or a microcontroller. The stack is located 
in a region within the RAM memory. The stack pointer (SP register) points toward the bot-
tom of the pile. This is variable because the stack grows when storing additional data and 
shrinks when data is retrieved. DIR1, DIR2, and DIR3 are addresses stored in the stack.



68	 Microcontrollers: Fundamentals and Applications with PIC

a similar instruction, the instruction takes the value located at the top of 
the stack and places it in the PC. This causes the program to execute the 
instruction immediately after the call instruction. The LIFO structure of 
the stack allows subroutine nesting, that is, the call to a subroutine from 
another subroutine as shown in Figure 4.4.

In medium-end PIC microcontrollers, the stack has some specific 
characteristics:

	 1.	The stack is separated from the data memory and program memory.
	 2.	There is no stack pointer register.
	 3.	The stack can only store addresses.
	 4.	The size of the stack is limited, up to eight addresses.

With this, it is possible 
to represent the stack in 
medium-end PIC microcon-
trollers as a set of eight regis-
ters, each one of them being 
13 bits long. These registers, 
which store addresses from 
the program memory, are 
organized following a LIFO 
structure. The instructions 
that manipulate the stack 
are: call, return, retfie, and 
retlw. The stack also stores 
addresses in the event of 
interrupts.

SR1MP SR2
STACK

DIR1:
Call SR1

DIR2: DIR3:

DIR1
Retrieve

Store

DIR2
DIR3

...

...

Return Return

Call SR2 Call SR3

Figure 4.4 
The stack and subroutine nesting. The main program (MP) calls subroutine SR1, which 
calls SR2, and so on. Every time the instruction call is executed it stores the return address 
in the stack. Each return address (DIR1, DIR2, DIR3, …) is equal to the value of the program 
counter (PC) when the instruction call was executed. The instruction return, which finishes 
the subroutine, retries the return address and stores it in the PC. The last address stored in 
the stack is the first address to be retrieved, using the LIFO structure of the stack.

12
DIR1
DIR2
DIR3

DIR9
DIR10
DIR11

DIR4
DIR5
DIR6
DIR7
DIR8

0

Figure 4.5 
The stack in medium-end PIC microcontrollers is 
made of eight registers or cells, each one with 13 bits. 
The stack overflows when more than eight subrou-
tines are nested.



Instruction Set and Assembler Language Programming	 69

The limited size of this stack allows the nesting of up to eight subrou-
tines. That is, the main program can call a subroutine; this subroutine can 
call another subroutine and so on up to a total of eight calls. This eight-level 
stack depth is more than enough in the majority of applications. However, 
it is the responsibility of the programmer to ensure that the number of 
nested calls does not exceed the maximum allowable (Figure 4.5). These 
microcontrollers are not able to indicate stack overflow.

4.2  Instruction Set in Medium-End PIC Microcontrollers

The model for programming medium-end PICs consists of two elements: 
the W register and the registers in the data memory. The task of the W 
register is similar to the task of the traditional accumulator in micropro-
cessors. The registers in the data memory can be special function registers 
(SFRs) or general purpose registers (GPRs) as shown in Figure 4.6.

From the point of view of the programmer, the most important charac-
teristics for a medium-end PIC microcontroller instruction set are:

	 1.	All instructions are 14 bits long.
	 2.	Most of the instructions are executed during a single instruc-

tion cycle that lasts four oscillator periods. Only branch instruc-
tions and instructions that modify the content of the Program 
Counter Low (PCL) register need two instruction cycles for their 
execution.

	 3.	Any register in the microcontroller can be the source or destina-
tion for data transfer, arithmetic, or logic operations.

	 4.	Any bit from any registers in the data memory can be individu-
ally accessed.

W

SFR GPR

... ...

Data memory

Figure 4.6 
Programming model for medium-end PIC microcontrollers with three types of registers: 
Work (W) register, special function registers (SFRs), and general purpose registers (GPRs).



70	 Microcontrollers: Fundamentals and Applications with PIC

Table 4.1
Medium-End PIC Microcontroller Instruction Set

Mnemonic Operation Affects Cycles

1. Data Transfer

movf f, d f = > d Z 1
movwf f W = >f — 1
movlw k k = >W — 1
clrf f 0 = >f Z 1
clrw 0 = >W Z 1

2. Arithmetic and Logic

addwf f, d f + W  = > d C, DC, Z 1
addlw k k + W = > W C, DC, Z 1
subwf f, d f – W = > d C, DC, Z 1
sublw k k – W = > W C, DC, Z 1
incf f, d f + 1 = > d Z 1
decf f, d f – 1  = > d Z 1
andwf f, d f and W = > d Z 1
andlw k k and W = > W Z 1
iorwf f, d f or W = > d Z 1
iorlw k k or W = > W Z 1
xorwf f, d f xor W= > d Z 1
xorlw k k xor W = > W Z 1
rlf f, d rotate f left through C = > d C 1
rrf f, d rotate f right through C = >d C 1
comf f, d #f = > d Z 1
swapf f, d fL ↔ fH = > d — 1

3. Control Transfer

goto a branch to address — 2
btfsc f, b branch if f<b> = 0 — 1(2)
btfss f, b branch iff<b> = 1 — 1(2)
incfsz f, d f + 1 = > d, branch if 0 — 1(2)
decfsz f, d f - 1 = > d, branch if 0 — 1(2)
call a call subroutine in address a — 2
return subroutine return — 2
retfie interrupt return — 2
retlw k return from subroutine with k in W — 2

4. Bit Manipulation

bcf f, b 0 = > f<b> — 1
bsf f, b 1 = > f<b> — 1

5. Other

nop no operation — 1
clrwdt 0 = > WDT TO#, PD# 1
sleep go to low power consumption TO#, PD# 1
Note: 	 W, working register; f, data memory register; k, 8-bit constant; a, 11-bit constant; b, 

bit; d, destination as follows: If d = 0 destination is W and if d = 1 destination is f. 
C, DC, Z, TO#, and PD 3 are specific bits within the STATUS register.



Instruction Set and Assembler Language Programming	 71

	 5.	 It is not possible to transfer data from one memory cell to another 
memory cell using a single instruction. The W register needs to be 
used as an intermediate step.

	 6.	There are no instructions to store or retrieve data from the stack, such 
as the PUSH or POP instructions commonly used in microproces-
sors. The stack only stores addresses of instructions. Furthermore, 
only subroutine calls or returns can access the stack.

Table 4.1 summarizes the instructions found in medium-end PIC micro-
controllers. To better understand these instructions, they have been clas-
sified as:

Data transfer instructions•	
Arithmetic and logic instructions•	
Control transfer instructions•	
Bit manipulation instructions•	
Other•	

4.2.1  Data Transfer Instructions

Table 4.2 shows the data transfer instructions. When using these instruc-
tions, any register in the microcontroller can be the source or destination, 
but it is not possible to transfer data between two registers with a single 
instruction. It is necessary to use the W register as an intermediate step. If 
the register is INDF this means that indirect addressing is being used, and 
the operation will be carried out with the register pointed to by the SFR.

The instructions movf, clrf, and clrw affect the zero flag, that is, bit Z in 
the STATUS register. The instructions movwf and movlw do not affect any 
flags. All these instructions are executed in a single instruction cycle.

Table 4.2

Data Transfer Instructions

Mnemonic Operation Affects Cycles

movf f, d f = >d Z 1

movwf f W = >f — 1

movlw k k = >W — 1

clrf f 0 = >f Z 1

clrw 0 = >W Z 1

Note: 	 W, working register; f, data memory register; k, 8-bit constant; a, 11-bit 
constant; d, destination as follows: If d = 0 destination is W and if d = 1 
destination is f. Z is a specific bit in the STATUS register.



72	 Microcontrollers: Fundamentals and Applications with PIC

The instruction movwf copies the content of the W register into the reg-
ister f in the data memory without altering any flags. On the other hand, 
the instruction movf f,0 executes the inverse operation, that is, it copies 
the content of the register f into the W register. In this case, the register f 
remains unchanged but the zero (Z) flag is affected. The instruction movf 
f,1 copies the content of the register f into itself but affects the zero flag (Z). 
This instruction can be used to find out if the value in register f is zero or 
different than zero.

When programming in assembler language, the parameter d, which 
indicates the destination of the operation, can be expressed in several 
forms. For example, the instruction movf f,d can be written in several 
ways. Let’s assume we are working with the register X, this being a gen-
eral purpose register. If d = 0, then the instructions movf X,0 and movf 
X,W are equivalent. If d = 1, then the instructions movf X,1, movf X,f, and 
movf X are also equivalent.

Example 4.5

Let’s assume REG1 and REG2 are two general purpose registers in the same 
data memory bank. Design a program to exchange their contents.

Solution: To interchange the contents of this register we need a third register 
that will be called TEMP. This register will be used to store data temporarily as 
the W register is not enough. If REG1, REG2, and TEMP are located in the same 
data memory bank, we can write:

			   movf		  REG1, W
			   movwf		 TEMP
			   movf		  REG2, W
			   movwf		 REG1
			   movf		  TEMP, W
			   movwf		 REG2

4.2.2  Arithmetic and Logic Instructions

The arithmetic and logic instructions are shown in Table 4.3 This instruc-
tion set includes arithmetic instructions for addition and subtraction as 
well as incrementing and decrementing. Logic operations include logic 
negation or complement; operations or, and, xor; bit rotation to the right or 
left; and swapping nibbles.

Arithmetic instructions affect bits C, DC, and Z in the STATUS register. 
All logic instructions affect bit Z with the exception of the rotation that 
affects bit C and nibble swapping that does not affect any of these bits. 
When using arithmetic and logic operations with two operands, one of 
them must be placed in the W register while the other can be in the W 
register or any other register in the data memory. The result of the opera-
tion can be placed either in the W register or in any other register. The 



Instruction Set and Assembler Language Programming	 73

destination of the result is indicated by the parameter d when codifying 
the instruction. If d = 0 the result of the instruction is placed in W. If d = 1 
the result is placed in the register specified by the instruction.

All instructions that work with any data memory register allow direct 
or indirect addressing. When the register specified by the instruction is 
INDF, indirect addressing is used. In this case, the operation indicated by 
the instruction is carried out with the register pointed to by the special 
function register FSR.

Different than working with similar instructions in other microcon-
trollers or microprocessors, the carry over bit (bit C in STATUS register) 
does not intervene directly in the operation indicated by the instruction. 
However, this bit is affected by the result. This means, for example, that 
there is not an instruction that adds two registers taking into account the 
value of the carry over bit (operation f + W + C). Example 4.7 shows how 
to proceed when it is necessary to perform this addition.

The rotation instructions rlf f,d and rrf f,d rotate the contents of the reg-
ister indicated by the instruction in one bit to the left or to the right. The 
rotation instructions are affected by the carry over bit (bit C in STATUS 

Table 4.3

Arithmetic and Logic Instructions

Mnemonic Operation Affects Cycles

addwf f, d f+ W  = > d C, DC, Z 1

addlw k k + W  = > W C, DC, Z 1

subwf f, d f – W   = > d C, DC, Z 1

sublw k k  – W  = > W C, DC, Z 1

incf f, d f  + 1  = > Z 1

decf f, d f – 1  = > Z 1

andwf f, d f and W  = > d Z 1

andlw k k and W  = > W Z 1

iorwf f, d f or W  = > d Z 1

iorlw k k or W  = > W Z 1

xorwf f, d f xor W = > d Z 1

xorlw k k xor W  = > W Z 1

rlf f, d rotate f left through C = > d C 1

rrf f, d rotate f right through C = > d C 1

comf f, d #f = > d Z 1

swapf f, d fL ↔ fH = > d — 1

Note: 	 W, working register; f, data memory register; k, 8-bit constant; a, 11-bit constant; d, 
destination as follows: If d = 0 destination is W and if d = 1 destination is f. C, DC, 
and Z are specific bits in the STATUS register.



74	 Microcontrollers: Fundamentals and Applications with PIC

register). This bit operates as an extension of the register f taking the 
assumed position of bit 8 in this register. If d = 0 the result is placed in W 
without modifying f. If d = 1 the result is placed in f, thus modifying its 
initial value.

Example 4.6

Some logic and arithmetic operations using the W register.

		  Increment W:
			   addlw	1
		  Decrement W:
			   addlw	0xff
		  Logic negation (1-complement):
			   iorlw	0xff
		  2-complement for W:
			   xorlw	0xff
			   addlw	1
		  Set several bits to 0, for example, bits 3, 2, 1, 0:
			   andlw	0xf0
		  Set several bits to 1, for example, bits 3, 2, 1,0:
			   iorlw	0x0f

Example 4.7

When adding or subtracting integer numbers it is necessary to take into account 
the carry over that may have been produced in the preceding bit. One of the 
bytes will be in W and the other in a generic register that will be called REG. 
The carry over in the preceding step is bit C in the STATUS register. If we want 
the result to be placed in W, the operation to carry out is REG + W + C → W. 
The following segment of code shows how to perform this addition:

		  btfsc	STATUS, C		  ; Does C = 0? Yes – branch without incrementing W.
		  addlw	1					     ; No – increment W.
		  addwf	REG, W			   ; W + REG = > W.

4.2.3  Control Transfer Instructions

Table 4.4 shows the control transfer instructions including unconditional 
branches and conditional branches depending on the state of a bit in a 
register as well as subroutine calls and returns.

4.2.3.1  Unconditional Branches, Subroutine Calls, and Returns

The instruction goto “a” produces an unconditional branch to the instruc-
tion located in the address indicated by the instruction “a.” Therefore, the 
instruction loads the value “a” in the program counter. The instruction 
call “a” will execute the subroutine located in address “a.” The program 



Instruction Set and Assembler Language Programming	 75

counter (PC) is stored in the stack, and then it places the address “a” in the 
program counter, thus creating the branch to the subroutine.

These two instructions (goto and call) operate taking into account that 
memory is organized in pages. The operand for these instructions is an 
11-bit word that represents an address within a page. The other two bits 
in the PC, bits PC<12:11>, come from bits 4 and 3 in the PCLATH register 
(refer to Section 3.2.1.1 and Figure 3.7). Therefore, if PCLATH is not modi-
fied, the branches will occur within the same page. To branch across pages 
or call subroutines located in different pages it is necessary to previously 
modify bits 4 and 3 in the PCLATH register with the desired page num-
ber. This process can be carried out with the operator HIGH in assembler 
language as the next two examples illustrate.

Example 4.8

The following segment code illustrates how to branch to an address located in 
a different page.

		  Prog:
			   movlw		 HIGH Prog10
			   movwf		 PCLATH
			   goto		  Prog10
		  Prog10:
			   ;
			   ; Prog10 can be any address in the program memory.
			   ;

HIGH is an operator in assembler language that makes bits <15:8> in the address 
represented by the label Prog10 become the data in the instruction movlw. This 

Table 4.4

Control Transfer Instructions
Mnemonic Operation Affects Cycles

goto a branch to address — 2

btfsc f, b branch if f<b> = 0 — 1(2)

btfss f, b branch iff<b> = 1 — 1(2)

incfsz f, d f + 1 = > d, branch if 0 — 1(2)

decfsz f, d f – 1 = > d, branch if 0 — 1(2)

call a call subroutine in address a — 2

return subroutine return — 2

retfie interrupt return — 2

retlw k return from subroutine with k in W — 2

Note: 	 W, working register; f, data memory register; k, 8-bit constant; a, 11-bit constant; b, 
bit; d, destination as follows: If d = 0 destination is W and if d = 1 destination is f.



76	 Microcontrollers: Fundamentals and Applications with PIC

makes the destination page number to be placed in bits PCLATH<4:3>. When 
the instruction goto is executed, the bits PCLATH<4:3> are loaded in bits 12 
and 11 in the PC.

Example 4.9

The following program code illustrates how to call a subroutine that is located 
in a page number different from the page number that calls the subroutine.

		  movlw 	 HIGH Subroutine		  ; Bits <15:8> in the address where 
												            ; the subroutine begins
		  movwf 	 PCLATH					     ; �are loaded in PCLATH.
		  call		  Subroutine				   ; �Call subroutine.
		  ;
		  ;
	 Subroutine:
		  ; Beginning of subroutine that can be in any address
		  ; in program memory.
		  ;

The page number in the destination is loaded into bits PCLATH<4:3>. When 
the call instruction is executed, the bits PCLATH<4:3> are loaded in bits 12 
and 11 in the PC.

The instruction goto produces a direct unconditional branch because 
the target address is located in the instruction. This is not the only type 
of unconditional branch possible in medium-end PIC microcontrollers. 
Any instruction that modifies the special function register PCL produces 
an unconditional branch. In this case, it will be an indirect unconditional 
branch because the target address is located in a register instead of in the 
instruction itself. Because the PCL register is 8 bits long, the branch can be 
up to 256 addresses. In order to branch farther away, it is necessary to load 
the PCLATH register correctly. The following example shows an indirect 
unconditional branch like this.

Example 4.10

Program an unconditional branch to the address noted by label “Prog20” with-
out using the instruction goto. The operators HIGH and LOW in assembly 
language can be used in this case. The following code segment illustrates this 
procedure:

			   movlw	HIGH Prog20
			   movwf	PCLATH
			   movlw	LOW Prog20
			   movwf	PCL
		  Prog20:
			   ;
			   ; Prog20 can be any address in the program memory.
			   ;



Instruction Set and Assembler Language Programming	 77

HIGH and LOW are assembler language operators. HIGH allows bits <15:8> 
in the address represented by the label Prog20 to be used as the operand in 
the instruction movlw. This makes the high part of the branching address to be 
placed first in the W register and then in PCLATH. The operator LOW makes 
the bits <7:0> in the address represented by label Prog20 to be used as the 
operand in the instruction movlw. This makes the low part of the branching 
address to be placed first in the W register and then in PCL. When PCL is modi-
fied, the contents of PCLATH and PCL move to the program counter, producing 
a branch to Prog20. The instruction movwf PCL needs two machine cycles 
because it modifies the value of the program counter.

It is also possible to create a branch relative to the value of PCL. PCL 
can store a base address, to which the instruction addwf PCL,f can add 
a value thus producing the target address. The following example illus-
trates the use of relative branches when handling tables stored in the pro-
gram memory.

Example 4.11

The subroutine Table contains a series of ASCII characters. The position of one 
character within the table, relative to its beginning, is stored in a general pur-
pose register called INDEX. We want to place in W the character pointed to by 
INDEX. The following program code shows how to perform this operation by 
using an indirect branch through PCL.

		  ;
		  ; Main program:
		  ;
		  movlw 	 HIGH Table		 ;Bits <15:8> from the address where the 	
										          ;table starts
		  movwf 	 PCLATH 			   ;�are loaded inPCLATH.
		  movf 	INDEX, W 			   ;Register INDEX points towards the 			
										          ;interior of the table.
		  call 	Table 				    ;�Call to subroutine table.
										          ;�W has the value pointed to by INDEX.
		  ;
		  ;Subroutine Table. It can be in any page in the program memory 	
		  ;as long as it does not exceed
		  ;256 words and it is bounded by 256 addresses. That is, any of 	
		  ;its instructions can be located
		  ;by only changing the PCL without having to alter the high part 	
		  ;of PC.
		  ;�Inputs: in W the position of the ASCII character.
		  ;�Outputs: in W the requested ASCII character.
		  ; �
		  Table:
			   addwf		 PCL, f
			   retlw		 ‘E’
			   retlw		 ‘x’
			   retlw		 ‘a’
			   retlw		 ‘m’
			   retlw		 ‘p’
			   retlw		 ‘l’
			   retlw		 ‘e’



78	 Microcontrollers: Fundamentals and Applications with PIC

First, the example shows the correct way to call a subroutine located in 
a different page. This is done by loading bits 4 and 3 of PCLATH with the 
page number. The operator HIGH makes bits <15:8> in the subroutine address 
become the data in the instruction movlw, placing them in W. W is then copied 
in PCLATH making the destination page number to be placed in bits PCLATH 
<4:3>. When the instruction call is executed, the current value of the PC will 
be stored in the stack and bits PCLATH <4:3> are loaded in bits 12 and 11 in 
the PC. This creates the branch to the subroutine.

Once in the subroutine, the instruction addwf adds the value in W to the 
PCL. The result is placed back into the PCL, creating a branch to one of the 
retlw the instructions. Operand of retlw is the requested ASCII code. For exam-
ple, if W = 4, the ASCII code for the character “p” will be placed in W.

The subroutine Table may be located in any program memory page as long 
as it does not exceed 256 words, and is also bounded by 256 addresses. That 
is, all of its instructions can be accessed with just changing the value of PCL. 
The instruction addwf PLC,f modifies the value of the PC and therefore needs 
two instruction cycles. The instruction retlw also needs two instruction cycles. 
This makes the execution of the subroutine Table last 4 instruction cycles (16 
cycles in the main oscillator in the microcontroller).

The instructions return, retfie, and retlw k are placed within a subrou-
tine in order to return to the original program that called the subroutine.

4.2.3.2  Conditional Branches

The following two instructions are the instructions used for conditional 
branches: btfsc f,b (bit test file and skip if clear) and btfss f,b (bit test file 
and skip if set). When using these instructions, the program branches 
if the condition of bit b in file f allows it. The branch in these instruc-
tions is very short: if the condition is met, the program will not execute 
the next instruction. If the condition is not met, the next instruction is 
executed.

To better understand these instructions, let us consider the following 
code segment:

	 btfsc					     f,b
	 instruction 1
	 instruction 2

The condition for branching is f<b> zero. If this condition is met, 
the program branches directly to instruction 2. If it is not met, the 
program first executes instruction 1. The instruction btfss works in a 
similar way. The block diagram in Figure 4.7 helps to understand these 
instructions.



Instruction Set and Assembler Language Programming	 79

Example 4.12

Increment W register if carry bit is 1. The following code segment shows the 
solution to this problem:

		  btfsc	STATUS,C
		  addlw	1
	 Continue: …

The carry bit is bit C in the STATUS register. If the carry over is 1, the condi-
tion for branching is not met and therefore the next instruction is executed. 
This instruction increases the value of the W register in 1 unit. If the carry is 0, 
the condition is met and therefore the program branches to the label Continue 
without incrementing W.

The instructions btfsc and btfss are very useful because they can be 
used to program decisions based on the status of any bit in any register in 
the microcontroller, either a special function register or a general purpose 
register. By combining these instructions with the unconditional instruc-
tion goto, it is possible to make multiple decisions. The follow example 
expands on this.

Example 4.13

Figure 4.8 shows the block diagram to program. If the condition f<b> = 1 is 
met, the program needs to execute action 1. Otherwise, the program needs to 
execute action 2. After executing any of these instructions, the program has to 
execute instruction 3.

The following code structure implements the solution to this problem:

No

btfsc f, b
Instruction 1
Instruction 2

btfss f, b
Instruction 1
Instruction 2

Instruction 1

Instruction 2

Yesf<b>=0? No

Instruction 1

Instruction 2

Yesf<b>=1?

Figure 4.7 
Conditional jump instructions. The figure shows program segments with the instructions 
btfsc and btfs as well as their block diagrams.



80	 Microcontrollers: Fundamentals and Applications with PIC

					     btfss	f,b
					     goto	 Action2
	 Action1:
					     ;
					     ; Write here instructions for action 1.
					     ;
					     goto Action3
	 Action2:
					     ;
					     ; Write here instructions for action 2.
					     ;
	 Action3:
					     ;
					     ; Write here instructions for action 3.
					     ;

The instructions incfsz f,d and 
decfsz f,d combine incrementing 
or decrementing any register with 
a conditional branch depending 
on the result of the arithmetic 
operation that they carried out. 
These instructions increment or 
decrement the register f. If the 
resulting value is zero, a branch is 
produced. Otherwise, the program 
executes the next instruction. The 
result can be placed in W (f is not 
modified) or in the register f. The 
location of the result is specified 
by the parameter d in the instruc-
tion. These instructions also pro-

duce a short branch, similar to the instructions btfsc and btfss that have 
been previously described. These instructions do not alter the STATUS 
register.

The instructions incfsz f,d and decfsz f,d are very useful because when 
combined with the instruction goto they can be used to program loops 
or iterations in which the number of iterations is controlled by the value 
located in the register f.

Example 4.14

This example illustrates how to program a loop.

					     movlw	times
					     movwf	COUNTER
			   Loop:
					     ;
					     ; Place here instructions for loop.
					     ;
					     decfsz	COUNTER, f	 ; Does COUNTER = 0?, Yes – branch to End.

No Yes 

Action 2 Action 1 

Action 3 

f<b>=1? 

Figure 4.8 
Block diagram for the algorithm to be pro-
grammed in example 4.13.



Instruction Set and Assembler Language Programming	 81

					     goto	 Loop	 ; No – do a new iteration.
		  End:
					     ;
					     ;

In this example the register is called COUNTER. It initially stores the number 
of desired iterations that has been represented by the constant called “times.” 
The instruction decfsz decrements and updates the value of COUNTER. When 
COUNTER is different than zero, the program executes the instruction goto 
Loop, thus starting a new iteration. When COUNTER reaches the value zero, 
the program branches to the address with the label End. This finishes the exe-
cution of this loop.

4.2.4  Bit Manipulation Instructions

Although there are only two instructions that specifically operate with 
bits, they are very powerful as they allow setting to 1 or 0 any bit in any 
register in the microcontroller. Table  4.5 shows these instructions and 
example 4.15 illustrates their use.

Example 4.15

Select bank in the data memory.
Bits RP1 and RP0 are used to select a specific data memory bank. Bank 1 

is selected with RP1 = 0 and RP0 = 1. The following code can be used to set 
these bits:

	 bcf		  STATUS, RP1
	 bsf		  STATUS, RP0

The instructions btfsc and btfss, described earlier, can also be consid-
ered as instructions that manipulate bits, although they are also used for 
control transfer.

4.2.5  Other Instructions

Table 4.6 shows the rest of the instructions that do not fit into any of the 
previous classifications. The instruction nop does not execute any opera-
tion other than spending one instruction cycle in the microcontroller.

Table 4.5

Bit Manipulation Instructions

Mnemonic Operation Affects Cycles

bcf f, b 0 = > f<b> — 1

bsf f, b 1 = > f<b> — 1



82	 Microcontrollers: Fundamentals and Applications with PIC

The instruction clrwdt resets the watchdog timer, that is, it sets its timer 
to zero. Bits TO# and PD# in the STATUS register are both set to 1. TO# 
indicates watchdog overflow and PD# indicates that the microcontroller is 
in low-power consumption mode.

The instruction sleep activates the low-power consumption mode and 
resets the watchdog timer. The bit TO# is set to 1 and the bit PD# is set to 0.

4.3 � Assembler Language Elements (for 
MPASM Assembler from Microchip)

Similar to other programming languages, assembler language has its own 
rules to write and combine words to create instructions. These rules make 
up the syntax for assembler language. This section describes the syntax 
for programming medium-end PIC microcontrollers.

4.3.1 I ntroduction

An assembler language program is a sequence of text lines. Each text line 
can be:

An instruction from the microcontroller’s instruction set•	
A directive to the assembler•	
A macroinstruction (macro)•	
A comment•	
A label•	
A blank line•	

A directive is an instruction written in the source code, directed toward 
the assembler program instead of to the microcontroller. A program 
written in assembler language has a combination of instructions for the 

Table 4.6

Other Microcontroller Instructions

Mnemonic Operation Affects Cycles

nop No operation — 1

clrwdt 0 = > WDT TO#, PD# 1

sleep go to low power consumption TO#, PD# 1



Instruction Set and Assembler Language Programming	 83

microcontroller and instructions to the assembler. These instructions give 
the assembler indications, such as definition of variables, the location of 
the program within the memory, and location of data memory.

A macroinstruction, or macro for short, is a user-defined instruction. The 
macro contains instructions from the microcontroller’s instruction set 
and directives to the assembler. After the macro has been defined, when 
it appears in the code, the assembler will substitute the macro with the 
instructions used in its definition.

A comment is text whose objective is to help programmers by making it 
easier to read and understand the source code. Comments are preceded 
by a semicolon (;). When the assembler finds a semicolon in a line of code, 
it ignores everything in the rest of that line.

A label is the symbol that identifies a line in the source code represent-
ing the address of an instruction. Labels must be placed in column 1 and 
must be followed by a colon (:).

Example 4.16

The following code segment has two instructions: one for the microcontroller 
and one for the assembler.

	 data_5	 equ		  0xA8		  ; Defines symbol data_5 and assigns a value.
	 prog1:
				    movlw	data_5		  ; Instruction loads W register with the value in
										          ; the symbol data_5.

The symbol data_5 represents a constant whose value is assigned by the 
directive equ. The symbol prog1 is a label that represents the address in the 
program memory in which the instruction movlw data_5 is located. The first 
line of code is an instruction for the assembler language and the third line is 
an instruction for the microcontroller. Line 2 only contains a label while line 4 
only contains a comment.

The lines that contain instructions for the microcontroller are struc-
tured in different fields. Some of these fields may be optional. Their syn-
tax is as follows:

[label[:]]	mnemonic[operand 1][, operand 2]	 [;comment]

The fields inside brackets are optional. The different fields are separated 
with one or more blank spaces or with tabs. If the instruction has two 
operands, a comma separates them. Operands can be constants, symbols, 
or expressions.

Directives and the mnemonic can be written in lowercase or upper-
case. For example, movlw and MOVLW are both correct and represent the 
same instruction.



84	 Microcontrollers: Fundamentals and Applications with PIC

Constants are values used in the program. Constants can be either 
numerical or ASCII. Numerical constants may be written in decimal, 
hexadecimal, octal, or binary. An ASCII constant is made up by the binary 
code that represents that ASCII character. The assembler treats constants 
as 32-bit binary numbers. When trying to write the constant into a shorter 
field, the constant is truncated. Table 4.7 shows some examples of syntax 
for constants in the PIC assembler language.

Example 4.17

All these instructions store the decimal value 167 in the W register:

			   movlw		 .167
			   movlw		 0a7h
			   movlw		 247O
			   movlw		 b’10100111’

Note how the hexadecimal constants must start with a digit in order to not 
be misunderstood as labels.

Numeric constants may be preceded by positive (+) or negative signs 
(–) to indicate positive or negative values. When there are no signs, the 
assembler assumes a positive value.

Assembler programs can also use symbols. A symbol is a set of up to 
32 alphanumeric characters. Symbols must start with a letter or with the 
character (_). Symbols are used to name:

Instruction addresses. In this case, the symbol is called a label•	
Constant data•	

Table 4.7

Constants and Syntax Used in Assembler Language

Constant Syntax Example Value

Decimal D’decimal_number’
.’decimal_number’ 

D’167’
.’167’ 

0x000000A7

Hexadecimal H’hexadecimal’
0xhexadecimal 
hexadecimalH

H’A7’ 
0xA7 
0A7H 

0x000000A7

Octal O’octal’
 octalO 

O’247’ 
247O 

0x000000A7

Binary B’binary’ B’10100111’ 0x000000A7

ASCII A’ASCII_char’ 
‘ASCIII’ 

A’Z’ ‘Z’ 0x0000005A

Note: The letters D, H, O, and B are used to indicate the type of constant. They can be written 
in lowercase or uppercase.



Instruction Set and Assembler Language Programming	 85

Data memory registers, either special function registers or gen-•	
eral purpose registers
Bits in the data memory registers•	

All symbols except labels must be defined before the source code uses 
them, using among others the directives equ and set. From the microcon-
troller’s point of view, the symbols used to name registers are data memory 
addresses. This is because the instructions make references to the register 
though their address in the data memory. The assembler codes the name 
of the variable using the address represented by that name. In example 
4.18, if the variable REG1 appears in one instruction, the assembler will 
code it using the value 20h. The symbols that name register bits must be 
defined with values 0 to 7 as the PIC registers are 8 bits long.

Example 4.18

Consider the program segment shown below:

CONST1			   equ	 0xA5		  ;Define symbol CONST1 and assign value 	
										          ;A5h.
REG1		  equ	 20h				    ;Define symbol REG1 and assign value 20h.
BIT3		  equ	 3					     ;Define symbol BIT3 and assign value 3.
			   org	 0x10				    ;Memory address where program starts .
prog1:
			   movlw	CONST1			   ;Set W register to A5h.
			   movwf	REG1				    ;W stored in REG1.
			   bcf	 REG1, BIT3		 ;Set to 0 bit 3 in REG1

In this program the symbol CONST1 represents an 8-bit constant with value 
A5h. REG1 is the general purpose register located in address 20h in the active 
memory bank. The value of the symbol REG1 is 20h. BIT3 is a constant with 
value 3. Here it is used as the name for bit 3 in the register REG1. The symbol 
prog1 is a label that represents the address where the program starts. Its value 
is 10h, as it is given by the directive org 0x10.

In the assembler language program used by the PIC microcontrollers, 
the names of the special function registers, as well as the names of their 
bits, are not predefined symbols. This means that the programmer must 
define the symbols used to name these registers and their bits. To ease the 
programming process, Microchip gives the definition file for each device. 
This is a text file containing the symbols used by the manufacturer to 
name the special function registers and bits in that specific device. For 
example, in the microcontroller PIC16F873, the file PIC16F783.INC contains 
the definitions and names for this device. Each PIC microcontroller has a 
similar file. The source code program in assembler must then include the 
specific file for the device in order to use the symbols defined in the file. 
Including the specific device file is done by using the directive #include as 
shown in Example 4.19.



86	 Microcontrollers: Fundamentals and Applications with PIC

Example 4.19

When working with the PIC16F84 microcontroller, the file P16F18.INC 
contains the definition of the names of the special function registers 
and their bits.

These names can be included in the source program by writing a 
line of code with the directive to the assembler to include the file as:

		  #include P16F18.INC.

It is necessary to write this line before using the names of the registers in the 
program. Once this directive is given to the assembler, it is possible then to 
refer to the special function registers and their bits using the names defined in 
the file.

The following is a partial listing of the P16F84.INC file. Microchip supplies 
similar files for each PIC microcontroller.

	 ; P16F84.INC Standard Header File, Version 2.00 Microchip Technology, Inc.
	 ; This header file defines configurations, registers, and other useful bits of
	 ; information for the PIC16F84 microcontroller. These names are taken to match
	 ; the data sheets as closely as possible.
	 ; = = = = = = = = = = = = = = = = = = = = = = = = = = 
	 ; Register Definitions
	 ; = = = = = = = = = = = = = = = = = = = = = = = = = = 
	 W					     EQU H’0000’
	 F					     EQU H’0001’
	 ;----- Register Files------------------------------
	 INDF				    EQU H’0000’
	 TMR0				    EQU H’0001’
	 PCL				    EQU H’0002’
	 STATUS			   EQU H’0003’
	 FSR				    EQU H’0004’
	 PORTA				   EQU H’0005’
	 PORTB				   EQU H’0006’
	 EEDATA			   EQU H’0008’
	 EEADR				   EQU H’0009’
	 PCLATH			   EQU H’000A’
	 INTCON			   EQU H’000B’
	 OPTION_REG		 EQU H’0081’
	 TRISA				   EQU H’0085’
	 TRISB				   EQU H’0086’
	 EECON1			   EQU H’0088’
	 EECON2			   EQU H’0089’
	 ;----- STATUS Bits ----------------------------------
	 IRP				    EQU H’0007’
	 RP1				    EQU H’0006’
	 RP0				    EQU H’0005’
	 NOT_TO			   EQU H’0004’
	 NOT_PD			   EQU H’0003’
	 Z					     EQU H’0002’
	 DC					    EQU H’0001’
	 C					     EQU H’0000’
	 ;----- INTCON Bits ----------------------------------
	 GIE				    EQU H’0007’
	 EEIE				    EQU H’0006’
	 T0IE				    EQU H’0005’
	 INTE				    EQU H‘0004‘



Instruction Set and Assembler Language Programming	 87

	 RBIE				    EQU H‘0003‘
	 T0IF				    EQU H‘0002‘
	 INTF				    EQU H‘0001‘
	 RBIF				    EQU H‘0000‘
	 ;----- OPTION Bits ----------------------------------
	 NOT_RBPU			  EQU H‘0007‘
	 INTEDG			   EQU H’0006’
	 T0CS				    EQU H’0005’
	 T0SE				    EQU H’0004’
	 PSA				    EQU H’0003’
	 PS2				    EQU H’0002’
	 PS1				    EQU H’0001’
	 PS0				    EQU H’0000’
	 ;----- EECON1 Bits ----------------------------------
	 EEIF				    EQU H’0004’
	 WRERR				   EQU H’0003’
	 WREN				    EQU H’0002’
	 WR					    EQU H’0001’
	 RD					    EQU H’0000’

4.3.2 E xpressions, Operations, and Operators

Expressions are constants and symbols combined with arithmetic and logic 
operators. Expressions can be written using parentheses, similar to writ-
ing algebraic expressions. Expressions can be used in the field for oper-
ands and instructions. They are evaluated during the assembling process. 
The result of this evaluation becomes the value of the operand.

Example 4.20

Expressions are evaluated during assembling, not during the program execu-
tion. In the following segment of code, REG1 is a data memory register located 
in address 20h in one of the data memory banks.

REG1	 equ		  20h
		  movwf		 REG1 + 1

The expression REG1 + 1 does not increment the content of REG1, but the 
value of the symbol REG1. Therefore, the result is 21h. This result is obtained 
during the assembling process, so 21h becomes the operand of the instruction 
movwf. When the program is being executed, the instruction movwf will copy 
the content of the W register into register 21h in the active memory bank.

Operators are the symbols that indicate the mathematic and logic opera-
tions defined in assembler language.

4.3.2.1  Arithmetic Operators

Table 4.8 displays the arithmetic operators and the operations that they 
represent. Arithmetic operators include basic mathematic operations with 
symbols and constants. These operators can be used to build expressions 



88	 Microcontrollers: Fundamentals and Applications with PIC

that become part of the operands in instructions or in directives to the 
assembler. Arithmetic operations use 32-bit registers, although their result 
can be truncated to the length of the register or address assigned to the 
expression.

Example 4.21

The following example illustrates the use of mathematical operators, 
in particular the operation mod.

	 DATA1		 equ		  .18
	 DATA2		 equ		  .7
	 ;
				    movlw	DATA1%DATA2

The expression DATA1%DATA2 is evaluated during the assembling process 
using the values of the symbols DATA1 and DATA2 previously defined. The 
result of the operation mod is the residue of the division operation, in this case 
4. This is the value that will be placed into the W register when the program 
is executed. Although the assembler uses 32 bits to calculate this expression, 
the result will be only the 8 least significant bits as this is the length of the W 
register.

The plus and minus signs can also be used to indicate if a constant is 
positive or negative. For example, the symbol “–” placed before a sym-
bol or a constant generates the 2-complement for that symbol or constant 
using 32 bits When assigning this value to a shorter register, it will be 
truncated to the appropriate length using the least significant bits.

Example 4.22

The following segment of code defines the symbol DATA and assigns to it the 
value decimal 3. What is the value of the expression –DATA? What will be 
stored in W when the program is executed?

Table 4.8

Arithmetic Operators and Operations

Operator Operation Example

+ Addition A1 + A2

– Subtraction A1 – A2

* Multiplication A1 * A2

/ Division A1/A2

% Mod (reminder in a division) A1%A2



Instruction Set and Assembler Language Programming	 89

			   DATA	 equ		  .3
					     movlw	–DATA

Expressions are evaluated using 32 bits Therefore, the value of the expres-
sion –DATA is FFFFFFFDh, which is the 2-complement representation of –3 
using 32 bits When the instruction is coded, the assembler will use the 8 least 
significant bits, which is FDh. Therefore, during the execution of the program, 
the value in W will be FDh, which is the 2-complement representation of –3 
using 8 bits.

4.3.2.2  Logic and Boolean Operators

Table 4.9 shows the logic and Boolean operators. The symbols and con-
stants used in these operations can have only two values: TRUE or 
FALSE. A symbol or constant has the logic value TRUE if its numerical 
value is different than zero and FALSE if its numerical value is equal 
to zero.

The evaluation of a logic or Boolean operation can only take the val-
ues TRUE or FALSE. If the logic value is TRUE that expression has the 
logic value 1; if the logic value is FALSE the expression has the logic 
value 0.

Example 4.23

Assume symbols A1 and A2 having the values 20h and 21h, respectively. What 
is the value of the different expressions? What is the value placed in the W 
register after executing the following instructions?

Table 4.9

Logic and Boolean Operators

Operator Operation Example

! NOT ! A1

&& AND A1 && A2

|| OR A1 || A2

> Higher than A1 > A2

< Less than A1 < A2

>  Higher or equal to A1 >= A2

<  Less or equal to A1 <= A2

= Equal to A1 == A2

!= Different than A1 != A2



90	 Microcontrollers: Fundamentals and Applications with PIC

Expression

Result after 
Evaluation with 

A1 = 20h and A2 = 21h 
Instruction Using the 

Expression

Value in W 
after Executing 
the Expression

! A1 FALSE movlw  ! A1 00h

A1 && A2 TRUE movlw A1 && A2 01h

A1 || A2 TRUE movlw A1 || A2 01h

A1 > A2 FALSE movlw A1 > A2 00h

A1 < A2 TRUE movlw A1 < A2 01h

A1 >= A2 FALSE movlw A1 >= A2 00h

A1 <= A2 TRUE movlw A1 <= A2 01h

A1 == A2 FALSE movlw A1 == A2 00h

A1 ! = A2 TRUE movlw A1 != A2 01h

4.3.2.3  Logic Operators Using Direct Bit Manipulation

Table 4.10 shows the logic operators that work directly with bits. These oper-
ators use the logic operations by directly modifying the bits of the symbols 
and constants. The operations AND, OR, and XOR take place among bits in 
the same position. The result of these operations is a binary number.

Example 4.24

Assume symbols A1 and A2 with values 3 and 5, respectively. What is the 
value of the different expressions? What is the value placed in the W register 
after executing the following instructions?

Expression

Result with 
A1 = 3 and 

A2 = 5 
Instruction Using 

the Expression

Value in W after 
Executing the 

Expression

~ A1 FFFFFFFCh movlw ~ A1 + 1 FDh (that is, -3)

A1 & A2 00000001h movlw A1 & A2 01h

A1 | A2 00000007h movlw A1 | A2 07h

A1 ^ A2 00000006h movlw A1 ^ A2 06h

A1 >> 1 00000001h movlw A1 >> 1 01h

A1 << 2 0000000Ch movlw A1 << 2 0Ch

4.3.2.4  Assign Operators

Assign operators are used for assigning a value to a symbol (table 4.11). 
The assigned value can be the result of evaluating an arithmetic or logic 



Instruction Set and Assembler Language Programming	 91

expression. These operators are used to define a symbol, simultaneously 
assigning an initial value to the symbol or modifying the value of a sym-
bol previously defined. The directive set is to define symbols whose value 
can be changed during the assembling process.

Example 4.25

The following program code illustrates the use of assign operators. The pro-
gram stores the values 10 and 15 in the registers 20h and 21h.

DATA = .10					    ; Define symbol DATA. Store initial value 10.
REGISTER = 0x20			   ; Define symbol REGISTER. Store initial value 20h.
		  movlw	DATA			   ; Store 10 in W and

Table 4.10

Logic Operators Using Direct Bit Manipulation

Operator Operation Example

~ NOT ~ A1

& AND A1 & A2

| OR A1 | A2

^ Exclusive OR (XOR) A1 ^ A2

>> Right shift A1 >> 1

<< Left shift A1 << 2

Table 4.11

Assign Operators

Operator Operation Example Meaning

 =  Logic or arithmetic assignment var = 0 var = 0

++ Increment var ++ var = var + 1

-- Decrement var -- var = var – 1

+ =  Add and assign var += k var = var + k

- =  Subtract and assign var -= k var = var – k

* =  Multiply and assign var *= k var = var * k

/ =  Divide and assign var /= k var = var / k

% =  Mod and assign var %= k var = var % k

& =  AND and assign var &= k var = var & k

| =  OR and assign var |= k var = var | k

^ =  XOR and assign var ^= k var = var ^ k

>>=  Right shift and assign var >>= k var = var >> k

<<=  Left shift and assign var <<= k var = var << k



92	 Microcontrollers: Fundamentals and Applications with PIC

		  movwf	REGISTER		 ; save it in register 20h.
DATA + = .5					    ; Now, the value for symbol DATA is 15
REGISTER ++					    ; and symbol REGISTER equals 21h.
		  movlw	DATA			   ; Store 15 in W and
		  movwf	REGISTER		 ; save it in register 21h.

The first two program lines define the symbols DATA and REGISTER with 
their initial values. The symbol DATA is used by the program as a constant and 
REGISTER represents the address of a data memory register. The values for 
both symbols are changed during program assembly. Therefore, instructions 
in the lines 7 and 8 are coded with operands different from the operands in 
lines 3 and 4.

4.3.2.5  Addressing Operators

Table  4.12 shows the addressing operators. These operators work with 
memory addresses. The operator $, when used as the instruction operand, 
signifies the real address for the instruction.

Example 4.26

The instruction

			   goto	 $

has the same effect as the instruction:

			   prog:	goto	 prog

The operators low, high, and upper return bits 0 to 7, 8 to 15, and 16 to 21 
from the label they operate. Because memory addresses in medium range 
PIC microcontrollers have 13 or fewer bits, the operator upper is not used 
in these microcontrollers. The operator high returns bits 8 to 12 from the 
address it operates. Example 4.10 (section 4.2.3.1) shows how to use the 
operators low and high.

Table 4.12

Addressing Operators

Operator Operation Example

$ Real address goto $

low Address low byte movlw low label

high Address high byte movlw high label

upper Address highest byte movlw upper label



Instruction Set and Assembler Language Programming	 93

4.3.3  Directives

This section describes the most commonly used directives. The detailed 
description for all the MPASM directives is available on the Microchip 
Web site (http://www.microchip.com). Directives are instructions directed 
to the assembler program (instead of to the microcontroller) that will exe-
cute the program. A typical source code program written in assembler 
language has a mix of directives and instructions to the microcontroller. 
Directives are used to control the assembling operation, indicating dif-
ferent characteristics of the assembling process. For example, directives 
tell the assembler program the type of microcontroller that will be used; 
the definition of symbols used to name data, register, and bits; the initial 
address for the memory program; and so forth.

The general syntax for directives is as follows:

			   [label[:]]	directive	 [operands]	[;comment]

If the directive has several operands, these are separated with commas. 
Operands can be constants, symbols, or expressions. The fields with brack-
ets are optional. Table 4.13 shows the most commonly used directives. The 
full list of directives is available on the Microchip Web site.

Table 4.13

Most Commonly Used Directives By the Assembler MPASM for PICs

General Use Directives

Goal of Operation Directives

Define microcontroller and number system list, processor, radix

Include a file within the source code, for example, a .INC 
file with definition of symbols

#include

Define symbols equ, set,

Set program origin org

Finish source code program end

Directives Used for Relocatable Code

Goal of Operation Directives

Indicate beginning block of instructions code

Indicate beginning block of data udata, udata_shr

Reserve space in data memory res

Indicate how symbols will be used global, extern

Select page in program memory pagesel

Select bank in data memory banksel, bankisel



94	 Microcontrollers: Fundamentals and Applications with PIC

4.3.3.1  General Use Directives

Most programs written in assembler language use general directives. 
These directives give the assembler program information about:

The type of microcontroller PIC for which the program is written•	
The default number system•	
The file that contains the definitions for the register and bit symbols•	
The symbols used to name general purpose registers•	
The address of the first line of program after which the assembler •	
will have to code the program instructions.

4.3.3.1.1  Directives list, processor, and radix

The syntax for the directive list is:

 list [option1][,option2][,…].

The directive list turns listing output on and controls its format. Most of 
the options used for this directive do not control the format of the listing 
but the assembling. These options are shown in Table 4.14 and Example 
4.27 illustrates the use of this directive.

Example 4.27

The MPASM assumes by default that numerical constants are in hexadecimal. It 
also assumes by default that the hexadecimal file that it generates will be in the 
Intel 8-bit standard format. If none of these parameters needs to be changed, 

Table 4.14

Several Options for the List Directive

Option Action

p = type of processor Type of microcontroller. For example, p = 16f873 tells the 
assembler that the microcontroller used is a PIC16F873. This 
option does not assume a default value.

r = number system Informs the numerical system that is used when writing a 
numeric constant in the program. (decimal, DEC; 
hexadecimal, HEX; octal, OCT). Example r = DEC. The 
default system is hexadecimal.

f = hex format Specifies the format for the hexadecimal file:

Standard 8-bit hexadecimal: INHX8m.

8-bit separated hexadecimal: INHX8S.

32-bit extended hexadecimal: INHX32.

The default value is the standard 8-bit hexadecimal format.



Instruction Set and Assembler Language Programming	 95

the list directive will only have to specify the type of microcontroller. For a 
PIC16F873, the program line with the directive will be:

			   list	 p = 16f873

It is necessary to keep in mind that the word “list” must be writ-
ten after at least the second column in the line. Otherwise, it will 
be understood as a label, generating an error as the word “list” is a 
reserved word.

A different way to declare the type of microcontroller and the number 
system is by using the directives processor and radix. Their syntax are:

			   processor	 type_processor
			   radix			   number_system

Example 4.28 shows how to use these directives.

Example 4.28

We want to declare the microcontroller being used as a PIC16F84A, and the 
decimal numbering system will be used by default to write numerical con-
stants. There are two ways to write the declarations. The first one uses the 
directives processor and radix:

	 processor	 16f84a
	 radix			  dec

The second way uses the directive list:

	 List			   p = 16f84a, r = dec

Those constants written in the program without specifying their numer-
ical system will be understood by the assembler as being written in the sys-
tem declared by the directive radix or by the option r in the directive list.

Example 4.29

The following segment of code, based on an example shown in the help of the 
MPASM assembler, illustrates how the constants are interpreted depending on 
the radix and list directives.

list		  r = dec	 ; From now on, constants are in decimal unless 			
						      ; otherwise specified.
						      ;� 
movlw		 50H		  ;� This is 50 hexadecimal.
movlw		 0x50		  ;� A different way of writing 50 hexadecimal.
movlw		 50O		  ;� This is 50 octal.



96	 Microcontrollers: Fundamentals and Applications with PIC

movlw		 50			  ; �This is 50 decimal because its number system
						      ;� is not specified.
radix		 oct		  ; From now on, constants are in octal unless 			 
						      ; otherwise specified.
						      ; �
movlw		 50H		  ; �This is 50 hexadecimal.
movlw		 0x50		  ; �Another way of writing 50 hexadecimal.
movlw		 .50		  ; �This is 50 decimal.
movlw		 50			  ; �This is 50 octal because its number system
						      ; �is not specified.
radix		 hex		  ; From now on, constants are in hexadecimal unless 	
						      ; otherwise specified.
						      ;� 
movlw		 .50		  ;� This is 50 decimal.
movlw		 50O		  ;� This is 50 octal.
movlw		 50			  ;� This is 50 hexadecimal because its number system
						      ;� is not specified.

4.3.3.1.2  Directives equ and set

The syntax for the directives equ (define constant) and set (define vari-
able) are:

	 symbol	equ	 expression
	 symbol	set	 expression

These directives assign the value of the expression to symbol. They dif-
fer in the fact that the value of a symbol defined using the directive equ 
cannot be later modified by the assembler. However, the symbols defined 
using the directive set can be changed later in the program.

The directive equ is commonly used to define symbols associated with 
the microcontroller’s hardware and for this reason will not change, such 
as the special function register names and their addresses in the data 
memory. It is also used to name constant data.

In programs designed to use absolute object code (therefore not using 
a linker), the directive equ is used to name the general purpose registers 
that are used in the program and to assign these names to their appropri-
ate RAM addresses. For relative or relocatable object code, it is recom-
mended not to use this directive to define general purpose registers. It is 
better to use the directive res within a data block declared with the direc-
tives udata or udata_shr.

Example 4.30

The following code segment illustrates the use of the directives equ and set.
REG1			   equ	 20h			   ; REG1 is register 20h in data memory.
REG2			   equ	 21h			   ; REG2 is register 21h in data memory.
DAT			   set	 .15			   ; DAT is data with an initial value of 15.
						      movlw	DAT
						      movwf	REG1	 ; Store 15 in REG1
DAT++									        ; Modify value of symbol DAT.
						      movlw	DAT
						      movwf	REG2	 ; Store 16 in REG2.



Instruction Set and Assembler Language Programming	 97

4.3.3.1.3  Directive #include

The syntax for the directive #include (include additional source file) is:

	 #include file_name
	 #include “file_name”
	 #include <file_name>

in which file_name is the full name of a text file. If the name of the file 
contains blank characters, the first syntax mode cannot be used. This 
directive inserts the full text indicated in the specified file in the posi-
tion in which the directive is located within the source code. The direc-
tive #include is usually used to insert the definition file containing the 
definition of the names for the special function registers and bits into the 
source code. With this, the user does not have to declare these names in 
the source code.

Example 4.31

It is common to declare the type of processor and the names of the special 
function register and bits at the beginning of the source code written in assem-
bler. This is done by using the directives list and #include. The following piece 
of code illustrates how to write these directives if the selected microcontroller 
is PIC16F873 and definition file is named P16F873.INC:

List				    p = p16f873
#include			  p16f873.inc

4.3.3.1.4  Directive org

The syntax for the org (origin of program) is:

	 [label]	 org	 expression

This directive sets the program origin for subsequent code at the address 
defined by the expression. If the directive uses a label, the label receives 
the value of the expression.

Example 4.32

The directive org is normally used to indicate to the assembler program the 
memory address that corresponds to the reset (address 0) and to the interrupt 
vector (address 4). The following code shows an example of this:

	 list			   p = p16f873
	 #include		 p16f873.inc
	 org			   0					     ; Set address 0.
	 movlw			  high PP			   ; This instruction is set at address 0.



98	 Microcontrollers: Fundamentals and Applications with PIC

	 movwf			  PCLATH			   ; This instruction is set at address 1.
	 goto			   PP					    ; This instruction is set at address 2.
	 org			   4					     ; Set address 4;
	 ;
	 ; Write here instructions for interrupt subroutines
	 ; that will be assembled after address 4.
	 ;
	 ;
	 ; Main program will be written starting at address 800h.
	 ;
	 PP:	 org	 800h				    ; Set address 800h.
	 ;
	 ; Write here the main program.
	 ;

4.3.3.1.5  Directive end

The syntax for the directive end (finish source code) is: end. This direc-
tive tells the assembler program to finish assembling the source program. 
This directive is placed in the last line in the source program. The assem-
bler will ignore anything after directive end.

4.3.3.2  Directives for Relocatable Code

This section describes the most used directives when writing relocatable 
code. These are programs that need a linker in addition to the assembler 
program because the source code does not specify absolute addresses. 
These directives are used to:

Symbolically indicate the beginning of data or instruction blocks•	
Reserve space in the data memory for the variables used in the •	
program
Indicate which are global or external symbols in programs with •	
several source code files
Easily select pages in the program memory or register banks in •	
the data memory

4.3.3.2.1  Directive code

This directive indicates the beginning of a section of program code. Its 
syntax is:

[label]	 code	[ROM_address]

The field ROM_address indicates the address for the beginning of 
the section or group of instructions used in relocatable code. If the field 
ROM_address does not exist, the linker decides the initial address. The 
field label is used to name the section.



Instruction Set and Assembler Language Programming	 99

Two sections cannot have the same name. If the field label is not used, 
the section receives the name .code. A section of code ends when another 
section of code begins, or when it reaches the directive end.

Example 4.33

The following code segment illustrates how to use the directive code to declare 
sections of code.

Rst_vector			  code	 0			   ; This section begins at address 0.
	 movlw				   high PP	
	 movwf				   PCLATH
	 goto				    PP
Intr_vector			  code	 4			   ; This section beings at address 4.
	 goto				    SR_Int
Intr_Prog			   code	 5			   ; This section begins at address 5.
SR_Int:
;
; Write here instructions for subroutine interrupts.
;
Prog_Principal	 code				    ; The linker will set the initial  
											           ; address for this section.
PP:
;
; Write here the main program.
;

4.3.3.2.2  Directives udata, udata_shr, and res

The directives udata (being a section of uninitialized data) and udata_shr 
(being a shared section of initialized data) use the following syntax:

	 [label]		  udata			   [RAM_address]
	 [label]		  udata_shr		  [RAM_address]

These directives are used to declare the beginning of data sections. The 
label RAM_address specifies the first data memory address. If this label 
does not exist, the linker decides the initial address.

The directive udata is used for register sections located in a single 
data memory register bank. The directive udata_shr is used to declare 
sections that share more than a single memory bank. For example, in 
the PIC16F873 the registers located in address 20h to 7Fh in bank 0 are 
repeated at the same addresses in bank 2 (Figure 3.11). Therefore, when 
referring to this group of registers it is necessary to use udata_shr instead 
of udata. The term “uninitialized data” means that there is not an initial 
value to data in this section when they are defined. The directive res is 
used to define uninitialized data. The syntax for the directive res (reserve 
data memory) is:



100	 Microcontrollers: Fundamentals and Applications with PIC

	 [label]	 res	 memory_size

This directive forces the memory counter to advance in memory_size 
number. It is used to separate space in the data memory without assigning 
an initial value to this space. It is used within the data sections declared 
with the directives udata and udata_shr.

Example 4.34

The following section of code illustrates the use of the directives udata_shr 
and res.

						      udata_shr
			   REG1		 res				    1
			   REG2		 res				    1

This declares a shared section of uninitialized data with the symbols REG1 and 
REG2, reserving a memory cell for each one of them. The linker will assign the 
addresses for these registers.

4.3.3.2.3  Directives global and extern

The syntax for the directives global (export a symbol) and extern (declare 
an externally defined symbol) are as follows:

	 global		 symbol [, symbol…]
	 extern		 symbol [, symbol…]

These directives are used when there are several modules that need to 
be linked, with symbols defined in one module and used in another one. 
The directive global declares symbols defined in one module that must be 
available in other modules. The directive extern declares symbols that are 
used in the current module but have been defined in another module, in 
which they have been defined using the directive global.

Example 4.35

The following project consists of two modules. The first module contains the 
main program in the file named pp.asm. The second module, called sr.asm, 
contains the subroutines called from the main program. The subroutine Delay, 
one of the subroutines defined in this module, produces a delay that is pro-
portional to the value stored in the register named with the symbol REG. The 
main program calls this subroutine and gives it the delay value located in the 
register REG.

For the assembling and linking process to be correct, the main program 
declares the symbol Delay externally and defines the symbol REG as part of the 
data section, declaring it as a global symbol. On the other hand, the subroutine 



Instruction Set and Assembler Language Programming	 101

module defines the symbol Delay as global inside a program section and the 
symbol REG as external.

Main program module (file named pp.asm):

;
; Main program module.
; Examples of using directives global and extern.
;
		  list			   p = 16f873
		  #include		 p16f873.inc
 		  udata_shr
REG	 res			   1			   ; Define symbol REG.

		  global		  REG		  ; Symbol REG declared as global in this  
									         ; module
									         ; and external in the subroutine module.
		  extern		  Delay		 ; Symbol Delay defined external in this module
									         ; defined and declared global in subroutine  
									         ; module.
;
; �The call to subroutine Delay is in one of the sections in the main 
program (for example, in the Program Section).

;
;
Program				    code
;
		  movlw			  35h
		  movwf			  REG
		  call			   Delay
;
		  end

Subroutine module (file sr.asm):

;
; Subroutine program module.
; Examples of using directives global and extern.
;
		  list			   p = 16f873
		  #include		 p16f873.inc
		  global		  Delay		 ; Symbol Delay defined global in this module
									         ; and external in the main program module.
	 extern			   REG		  ; Symbol REG declared external in this module
									         ; and global in the main program.
;
; �The call to subroutine Delay is in one of the sections in the main 
program.

;
Program code
Delay:
		  decfsz		  REG,1
		  goto			   Delay
		  return
;
		  end



102	 Microcontrollers: Fundamentals and Applications with PIC

4.3.3.2.4  Directives pagesel, banksel, and bankisel

The syntax for the directives pagesel (select memory page), banksel (direct 
selection of register bank), and bankisel (indirect selection of register 
bank) are as follows:

	 pagesel	 label
	 banksel	 label
	 bankisel	label

The directive pagesel produces the necessary code to select the memory 
page where the label specified in the directive is located. This directive 
introduces the necessary instructions in the program to modify the regis-
ter PCLATH. If the microcontroller has only one memory page, this direc-
tive does not generate any code.

The directives banksel and bankisel produce the necessary code to select 
the memory bank in which the label specified in the directive is located, 
using direct or indirect addressing. The directive banksel is equivalent to 
introducing instructions to manipulate bits RP1 and RP0 in the STATUS 
register. The directive bankisel manipulates the bit IRP in the STATUS 
register to assign it the appropriate value.

Example 4.36

The following program illustrates the use of the directives pagesel, banksel, 
and bankisel.

			   list			   p = 16f873
			   #include	p16f873.inc
; Constant data:
DATA1	equ			   0x55
DATA2	equ			   .10
; Data memory registers:
	 udata_shr
REG1		  res			   1					     ; REG1 is register 20h in the data memory.
REG2		  res			   1					     ; REG2 is register 21h in the data 	
; memory.
; Programs:
Rst_vector 				   code	 0
			   pagesel		  PP					    ; Select page where PP is located.
			   goto			   PP					    ; This guarantees branching to  
												            ; correct address.	
Prog_Principal 		  code
PP:
			   pagesel		  SRoutine			  ; Select page where subroutines are  
												            ; located
			   call			   SRoutine			  ; guaranteeing branching to correct  
												            ; location.
;
; Operate with registers TRISB and PORTB using direct address:
			   banksel		  TRISB				   ; Select bank 1 because TRISB is in  
												            ; this bank.
												            ; This assures the correct  
												            ; addressing for TRISB.



Instruction Set and Assembler Language Programming	 103

			   clrf			   TRISB				   ; Work with TRISB.
			   banksel	 PORTB					    ; Return to Bank 0, because PORTB is  
												            ; located in this bank.
			   movf			   PORTB, DATA1	 ; Work with PORTB.
;
; Operate with REG1 using indirect address:
			   movlw			  REG1
			   movwf			  FSR				    ; Stored address of REG1 in FSR.
			   bankisel		 REG1				    ; Select bank where REG1 is located.
			   movlw			  DATA2				   ; Write 10 in
			   movwf 		  INDF				    ; REG1 using indirect addressing.
SRoutine:
;
; Write here subroutine instructions.
;
			   return
			   end

4.3.4  Macroinstructions

Macroinstructions (or macros for short) are instructions defined by the 
user using microcontroller instructions and assembler directives. Once 
a macro has been defined, it is possible to call it from the source code. 
Macroinstructions are defined using the following syntax:

	 macro_name	macro	 [arg_def1, arg_def2,…]
						      [ local	 label [, label, label,…]]
	 ;
	 ; Body of macroinstruction
	 ;
						      endm

In this syntax, macro_name is the symbol for the name given to the 
macroinstruction, and arg_def1, arg_def2, and so forth are optional argu-
ments used in the definition. These arguments are symbols used in the 
body of the macro. The first line in the definition contains the directive 
macro, declaring the name of the macro (macro_name) and the arguments 
(arg_def1, arg_def2, etc.) if these exist. The last line in the macro is used 
by the directive endm, which tells the assembler that this is the end of the 
macro. Each directive macro must have a directive endm.

The body of the macro contains the instructions and directives that pro-
gram the algorithm the programmer has decided to group as a macro-
instruction. The body of the macro uses the arguments declared in the 
directive macro as part of the operands for the instructions and directives. 
It is common for the body of the macro to contain local labels. These labels 
must be declared in the body of the macro using the directive local. Once 
a label has been declared as local, it does not matter if there is another 
label with the same name outside the macro.



104	 Microcontrollers: Fundamentals and Applications with PIC

The macro is called by writing its name and arguments within a line 
of program:

	 Macro_name	[arg1, arg2,…]

The assembler places the body of the macro in the source code, where it 
was called. When expanding the directives and instructions, the assem-
bler uses the arguments arg1, arg2, … to substitute the symbols used in the 
definition of the macro. Arguments can be either symbols or expressions.

Example 4.37

The following program defines the macro Convert. This macro is called twice 
by the program. The macro receives a hexadecimal number in a register called 
HEXA and outputs the equivalent ASCII character in a register called ASCII. For 
example, if HEXA = 0Ah, then ASCII = 41h. The conversion to ASCII is done 
by adding 30h to the hex number if this is less than or equal to 9, or by adding 
37h if the hex number is higher than 9.

	 list			   p = 16f873
	 #include		 p16f873.inc
	 ;
	 ; Macro definition:
	 ;
	 ; This macro converts an hexadecimal digit (0 to F) located in  
	 ; register called HEXA
	 ; into its equivalent ASCII character. The ASCII digit is then  
	 ; stored in the register called
	 ; ASCII.
	 ;
	 Convert macro	HEXA, ASCII						     ; Declare macro
			   local			  add30, add37, end_mac	; local labels.
			   movf			   HEXA, W						      ; Store hex digit in HEXA.
			   sublw			  9								        ; W > 9 ? (affects  
															               ; STATUS<C>).
			   movf			   HEXA, W						      ; Store hex digit in W 		
															               ; (does not affect STATUS<C>).
			   btfsc			  STATUS, C					     ; Yes (C = 0), add 37h to HEXA.
			   goto			   add30							      ; No (C = 1), add 30h to HEXA.
	 add37:
			   addlw			  37h
			   goto			   end_mac
	 add30:
			   addlw			  30h
	 end_mac:
			   movwf			  ASCII							      ; Store result in register ASCII.
			   endm											           ; End of macro.
	 ;
	 ; Data memory registers:
	 ;
			   udata_shr
	 HEXA1	res			   1
	 HEXA2	res			   1
	 ASCII1	 res		  1
	 ASCII2	 res		  1



Instruction Set and Assembler Language Programming	 105

	 ;
	 ; Programs
	 ;
	 Rst_vector			  code	 0
			   pagesel		  MP								       ; Select page where MP is  
	 ; located
			   goto			   MP								       ; to guarantee correct  
	 ; branching.
	 Main_Program:code	 0x800
	 MP:
			   movlw		 9
			   movwf		 HEXA1
			   movlw		 0Ah
			   movwf		 HEXA2
	 ;
			   Convert	 HEXA1, ASCII1					    ; Call macro Convert.
															               ; Assembler program will  
															               ; introduce here
															               ; the instructions for the  
															               ; macro.
	 ;
			   nop
	 ;
			   Convert 	HEXA2, ASCII2					    ; Call macro Convert again.
															               ; Assembler will introduce  
															               ; here the
															               ; instructions for the  
															               ; macro again.
			   nop
			   goto	 $										          ; Infinite loop.
			   end											           ; End of program.

4.3.5  Organization of a Program in Assembler Language

Although there are no strict rules for writing a program in assembler lan-
guage, it is recommended to write it in the following order:

	 1.	Define the processor and its symbols by using the directives list 
and #include.

	 2.	Write the definition of the macroinstructions that will be used in 
the program.

	 3.	Define the symbols that will represent constant data with the 
directives equ and set.

	 4.	Define the use of the data memory. This means to define the sym-
bols used in the program to represent general purpose registers 
and their addresses.

	 5.	Write the body of the main program. In general it should start by 
initializing the variables that require initial values.

	 6.	Write subroutines.
	 7.	Finish the program using the directive end.



106	 Microcontrollers: Fundamentals and Applications with PIC

It is important to note that the definition of symbols and their values, 
either data or addresses, is done before writing program instructions. 
The method for defining the location of the instructions in the program 
memory and the data in data memory is dependent on the use of abso-
lute vs. relocatable code. In absolute coding, the assembler must have all 
the information necessary to code the source program. This requires all 
addresses used in the source program to be defined from the beginning. 
This includes the addresses where the blocks of instructions start, as well 
as the addresses for the general purpose registers used by the program. 
Program addresses are defined using the directive org. Register addresses 
are defined using the directive equ.

When using relocatable code, the assembler creates an incomplete cod-
ing of the source program because the absolute addresses are not speci-
fied. The linker is the program that sets the final addresses for memory 
and data. The body of the program can be organized in sections, each one 
of them starting with the directive code. Some of these sections, for exam-
ple for the reset and interrupt vectors, must be placed in fixed sections in 
the program memory. In this case, it will specify the beginning address. 
For other sections that can be placed anywhere in the program memory, 
the linker will select the memory locations. Something similar happens 
with the data memory. Here, only the names of the registers used in the 
source program are declared, reserving memory size without specifying 
its address. This is done with the directives udata, udata_shr, and res.

Examples 4.38 and 4.39 show the recommended structure for source 
programs that will be assembled using absolute and relocatable code, 
respectively. The reader should analyze these two programs carefully.

Example 4.38

The following program shows the organization of the source code in assembler 
when using absolute code.

	 list	  		  p = 16f873			  ; Declaring the microcontroller to be  
											           ; used
	 #include		 <p16f873.inc>		 ; and its variables
	 ;
	 ; Define constants:
	 ;
	 DATA1				   EQU	 0x1		  ;
	 DATA2				   EQU	 0x2		  ;
	 ;	
	 ; Define variables:
	 ;
	 w_temp			   equ	 0x20		  ; Variable used to store W.
	 status_temp		 equ	 0x21		  ; Variable used to store STATUS.
	 X					     equ	 0x22		  ; Example.
	 Y					     equ	 0x23		  ; Example.
	 ;
	 ; Body of program:



Instruction Set and Assembler Language Programming	 107

	 ;
		  org		  0x000					    ; Reset vector address.
		  movlw		 high PP				    ; Prepare branch to main program,
		  movwf		 PCLATH				    ; guaranteeing correct address.
		  goto		  PP						     ; Go to address where main program  
											           ; starts.
	 ;
		  org		  0x004					    ; Interrupt vector address.
		  movwf 	 w_temp				    ; Save current content of W.
		  movf		  STATUS, W			   ; Copy current STATUS in W,
		  bcf		  STATUS, RP0			  ; Assure selection of bank 0
		  movwf	status_temp				   ; and save content in STATUS
	 ;
	 ; Write here subroutines for interrupt requests.
	 ;
		  bcf		  STATUS, RP0			  ; Assure selection of bank 0.
		  movf		  status_temp, W	 ; Recall copy of STATUS
		  movwf		 STATUS				    ; and write it back.
		  swapf		 w_temp, f			   ; Recall copy of W
		  swapf		 w_temp, W			   ; and write it back without altering  
											           ; STATUS.
		  retfie							       ; Return from interrupt.
	 ;
	 PP:
		  clrf		  X						      ; Initialize variables.
		  clrf		  Y						      ; Initialize variables.
	 ;
	 ; Write here instructions of the main program.
	 ;
		  movlw		 high SR1				   ; If SR1 is in a different page
		  movwf		 PCLATH				    ; guarantee selection of correct page
		  call		  SR1					     ; and call subroutine.
	 ;
	 ; Write here instructions of the main program
	 ;
		  goto		  $						      ; Example: infinite loop to finish  
											           ; main program.
	 ;
	 SR1:									         ; Beginning of subroutine SR1.
	 ;
	 ; Write here instructions for subroutine SR1.
	 ;
		  movlw		 high SR2				   ; Example: Call subroutine 2 that is  
											           ; in another page
		  movwf		 PCLATH				    ; guarantee selection of correct page
		  call		  SR2					     ; and call subroutine SR2.
	 ;
	 ; Write here instructions for subroutine SR1.
	 ;
		  return							       ; Return to main program from SR1.
	 SR2:									         ; Beginning of subroutine R2.
	 ;
	 ; Write here instructions for subroutine SR2.
	 ;
		  return							       ; Return to SR1 from SR2.
		  end								        ; End of source program.



108	 Microcontrollers: Fundamentals and Applications with PIC

Example 4.39

The following program shows the organization of the source code in assembler 
when using relocatable code.

		  list		   p = 16f873			  ; �Declaring the microcontroller to be
		  #include	 <p16f873.inc>	 ; used and its variables.
	 ;
	 ; Define constants:
	 ;
	 DATA1			  equ	 0x1			   ; Example.
	 DATA2			  equ	 0x2			   ; Example.
	 ;
	 ; Define variables:
	 ;
		  udata_shr
	 w_temp		  res	 1				    ; Variable used to store W.
	 status_temp res	 1				    ; Variable used to store STATUS.
	 X				    res	 1				    ; Example.
	 Y				    res	 1				    ; Example.
	 ;
	 ; Body of program:
	 ;
	 Rst_vector	code	 0				    ; Reset vector in address 0
		  pagesel	 PP						     ; Prepare branch to main program and
		  goto		  PP						     ; branch to address where it starts.
	 ;
	 Intr_vector code	 4				    ; Interrupt vector in address 4
		  goto		  SR_Int				    ; Branch to interrupt subroutine.
	 ;
	 Intr_Prog	 code	 5				    ; Section with interrupt subroutine.
	 SR_Int:
		  movwf 	 w_temp				    ; Save current content of W.
		  movf		  STATUS, W			   ; Copy current content of STATUS in W.
		  bcf		  STATUS, RP0			  ; Assure selection of bank 0 and
		  movwf		 status_temp			  ; save content of STATUS.
	 ;
	 ; Write here instructions for interrupt subroutine.
	 ;
		  bcf		  STATUS, RP0			  ; Assure selection of bank 0.
		  movf		  status_temp, W	 ; Recall copy of STATUS
		  movwf		 STATUS				    ; and write it back.
		  swapf		 w_temp, f			   ; Recall copy of W.
		  swapf		 w_temp, W			   ; Write it back without altering  
											           ; STATUS.
		  retfie							       ; Return from interrupt.
	 ;
	 Prog_Principal	 code			   ; Write main program here.
	 PP:
		  clrf		  X						      ; Initialize variables.
		  clrf		  Y						      ; Initialize variables.
	 ;
	 ; Write here instructions for main program.
	 ;
		  pagesel 	SR1					     ; Select page where SR1is located.
		  call		  SR1					     ; Call subroutine SR1.
	 ;
	 ; Write here instructions for main programl.
	 ;
		  goto	 $							       ; Example: infinite loop.



Instruction Set and Assembler Language Programming	 109

	 ;
	 Subroutines	 code					    ; Section for subroutines.
	 SR1:									         ; Beginning of subroutine SR1.
	 ;
	 ; Write here instructions for subroutine SR1.
	 ;
		  pagesel	 SR2					     ; Example: From subroutine SR1
		  call		  SR2					     ; call subroutine SR2.
	 ;
	 ; Write here instructions for subroutine SR1.
	 ;
		  return							       ; Return to main program.
	 ;
	 SR2:									         ; beginning of subroutine SR2.
	 ;
	 ; Write here instructions for subroutine SR2.
	 ;
		  return							       ; Return to subroutine SR1.
	 ;
		  end								        ; End of source code.

Macroinstructions and subroutines are two very valuable programming 
resources that permit the use of a modular approach when writing the 
source code program. They allow the programmer to write an algorithm 
only one time, but use it as needed, each time with different parameters. 
In addition to reducing programming time, they are also helpful in detect-
ing errors and making programs easier to understand. Subroutines and 
macroinstructions differ on when they are invoked. Macroinstructions 
are invoked or called during the assembling stage, whereas subroutines 
are called during the execution of the program.

When the assembler finds a call for a macroinstruction, it inserts in that 
space the instructions that define the macro. Therefore, the size of the pro-
gram memory being used will increase as the number of calls to the mac-
roinstruction increases.

Subroutines are defined only once and they are placed by the assembler 
or linker somewhere in the program memory. Subroutines are called dur-
ing the execution of the program. The effect of the subroutine call is to 
branch the program toward the instructions that define the subroutine, 
executing them in the same order they were written. The program returns 
to the point after it was branched by the call to subroutine. The number 
of times a subroutine is called does not have any effect on the size of the 
program.

The execution of a subroutine requires three elements: instruction for 
calling the subroutine, instruction for returning, and the stack. The main 
objective of the stack is to store the address for returning to the program 
from which the subroutine was called. The instructions for calling the 
subroutine and return, because they have to use the stack, increase the 
execution time. However, this increase in the execution time is normally 
minor.



110	 Microcontrollers: Fundamentals and Applications with PIC

An additional advantage of working with subroutines is the possibility 
to build and use subroutine libraries. A library is a file that contains a col-
lection of programs (subroutines) generally on a specific theme. During 
the linking process, the linker takes from the library only those subrou-
tines requested by the program and incorporates them within the object 
program.

Choosing between using macroinstructions or subroutines depends 
largely on the programmer’s preferences. However, for those microcon-
trollers with limited program memory, it can be better to use subroutines 
instead of macroinstructions if the algorithm is called several times.

4.4 � Available Resources for Programming PIC 
Microcontrollers in Assembler Language

The programs used to program applications in assembler language in 
medium-end PIC microcontrollers are:

Text Editor: This program is used to create the source program (file.
asm).

Assembler (MPASM.EXE or MPASMWIN.EXE): This program 
translates the source code file (in the file.asm) into machine lan-
guage. The translation may be full or partial. If the translation is 
full, the assembler produces a hexadecimal file (.hex) that contains 
the coded program. If the translation is partial, it produces an object 
file (.o) that will become one of the inputs to the linker program.

Linker (MPLINK.EXE): This program creates the machine lan-
guage file (.hex) by linking the different object modules (files .o) 
produced by the assembler and library files in a single module.

Library manager (MPLIB.EXE): This program creates a library 
(.lib) from several assembler programs. A library is a collection 
of programs.

Simulator/Debugger: This program simulates the microcontroller 
in a personal computer. It has several orders that are used to test 
the programs and debug errors. This program is included in the 
integrated development environment MPLAB.

Programmer: This program is used, with some additional hardware, 
to program the microcontroller. The programmer takes the hexa-
decimal file (.hex) produced by the assembler or the linker, then 
programs it into the device.



Instruction Set and Assembler Language Programming	 111

Integrated Development Environment MPLAB: This is an inte-
grated toolset for the development of applications using PIC 
microcontrollers, including the editor, assembler, linker, and 
debugger. With the use of the appropriate hardware it can also be 
used to program the microcontroller.

4.4.1  The MPASM Assembler

The MPASM translates the source program in the file.asm into machine 
language. When using a personal computer, the MPASM assembler can 
be used as a stand-alone program from the DOS prompt line (MPASM.
EXE), from the Windows operating system (MPASMWIN), or from the 
Integrated Development Environment. Figure 4.9 shows the assembling 
process and its associated files.

The assembler can generate absolute or relocatable code depending on 
whether a full or complete translation of the program source is performed. 
When doing a full translation, the assembler will produce a hexadecimal 
file (.hex). When doing a partial translation the assembler will produce an 
object file (.o) that will be used as the input to the linker MPLINK.

.asm
(source program)

.lst (list)

.err (error)

.err (error)

.hex (hexadecimal)

.xrf (cross reference)

.xrf (cross reference)

.cod (debug)

To  PIC
programer

To  linker
MPLINK

(a)

(b)

.cod (debug)

.o (object)

.asm
(source program)

.inc
(included)

MPASM

MPASM
.inc

(included)

Figure 4.9 
Assembling process with MPASM and files involved in this process. (a) Assembling with 
absolute codification. The hexadecimal file (.hex) contains the program translated into 
machine language and ready to be stored in the microcontroller’s memory. (b) Relocatable 
code assembling. It has partial translation into machine language. The output file is an 
object file (.o) that must be processed with the linker MPLINK.



112	 Microcontrollers: Fundamentals and Applications with PIC

4.4.1.1  Absolute Code Generation

In absolute code generation, the program MPASM carries out the process 
for translating the source code file into machine language. The result of 
this process is a file with the program fully codified. Absolute code gen-
eration can only be done when the source program contains all the infor-
mation that the assembler needs to translate it into machine language. 
This means that the source program contains the specifications for the 
memory addresses to store instructions and the addresses in memory for 
the registers used by the program. With this information, the assembler is 
able to fully codify the source program.

Absolute code generation requires the source program be totally con-
tained within a source file (.asm) or with parts of the program contained 
in files that will be included during the assembly process with the direc-
tive #include. As a result of the assembling process, the MPASM program 
generates the machine language code in hexadecimal format (.hex). The 
programmer can then use this file to program the microcontroller.

4.4.1.2  Relocatable Code Generation

In relocatable code generation, the MPASM program creates a partial cod-
ification of the source program. This task will later by completed by the 
linker MPLINK. When the addressing information in the source program 
is not complete, the assembler can only carry out a partial and incomplete 
codification of the source code. The linker MPLINK will finish the process 
by generating the machine language program.

The result of the assembling process is then an object file (.o) that will 
be used as the input file to the linker MPLINK. The linker can receive sev-
eral object files that will be linked to generate a single machine language 
program in hexadecimal format. The programmer will use this file to pro-
gram the microcontroller.

4.4.1.3  Files Used and Generated during the Assembling Process

There are several files used during the assembling process. The assembler 
needs some of these files as input files, while other files are generated as 
output files. The files generated during the assembling process are fully 
described in the help areas for the Integrated Development Environment 
(IDE) MPLAB available on the Microchip Web site. The most important 
files involved in the assembling process are:

Source file (.asm): This is a text file that contains the source code. It 
can be written on a personal computer using any text editor, such 
as the editor included in the IDE MPLAB. This file is an input file 
to the assembler MPASM.



Instruction Set and Assembler Language Programming	 113

Include source file (.inc): This is a text file that contains part of the 
source program. This file is included in the source file using the 
directive #include. This file is mainly used to define the names 
and addresses for the registers and bits of the microcontroller 
that will be used. Microchip supplies this file for each one of the 
PIC microcontrollers that they manufacture. For example, the file 
16f873.inc contains all the definitions for the names of the special 
function registers, their addresses, and the names of the bits in the 
PIC16F873 microcontroller. To use this file, the programmer has to 
include this file in the source code, as shown in example 4.19.

List file (.lst): This is a text file that contains the list of the source pro-
gram, addresses, and the codification of its instructions. This file 
can be generated by the assembler MPASM or the linker MPLINK.

Object file (.o): This is a file produced by the assembler as a result 
of relocatable codification. It contains the partial codification of 
the source program. This file becomes one of the input files to the 
linker MPLINK. These are not text files.

Hexadecimal file (.hex): This is a text file that contains the instruc-
tion codes and their addresses in the Intel hexadecimal format. 
This file can be generated by MPASM (absolute codification) or 
MPLINK (relocatable codification). This file is the final product of 
the assembler process or the assembler and linking process.

This hexadecimal file contains a set of text lines called records using the 
following format: :LLAAAATTDDDD…DDSS.

The structure of a record is as follows:

:—ASCII character that indicates the beginning of a record.
LL—Length of the record. These are ASCII characters that indicate the 

length in hexadecimal values of the data contained in the record.
AAAA—Record initial address. These are four ASCII characters that 

represent the address of the first data (byte). Because medium-end 
PICs have program memory cells of 14 bits and their content is in 
2 bytes, the address in this field is twice the real address.

TT—Indicates type of record. 00 indicates a data record. 01 indicates 
the last record in the hexadecimal file.

DD—This field contains the data. Two ASCII characters in this field 
represent the hexadecimal value of data (byte). Because medium-
end PICs have program memory cells of 14  bits, the content of 
each cell needs four ASCII characters in this field.

SS—Checksum. This is calculated by adding all the bytes (not the 
ASCII codes) of the record. SS is then the 2-complement of this 
sum using 8 bits.



114	 Microcontrollers: Fundamentals and Applications with PIC

Example 4.40

This example shows the structure of the list and hexadecimal files obtained 
after assembling a very basic program. The list file is only partially shown.

Source file (example.asm):

		  list	  		  p = 16f873
		  #include		 <p16f873.inc>
	 X					     equ				    0x20
	 Y					     equ				    0x21
		  org			   0x000				   ; Reset vector address.
		  movlw			  high MP
		  movwf			  PCLATH
		  goto			   MP	.
		  org			   0x004				   ; Interrupt vector address.
		  retfie
		  org			   0x0123
	 MP:
		  clrf			   X					     ; Sets X = 0.
		  clrw
		  addlw			  1
		  movwf			  Y					     ; Sets X = 1.
		  end								        ; End of source code.

List file (example.lst) (partially shown)

	 LOC OBJECT CODE LINE SOURCE TEXT
								        VALUE
		  00001					    list		  p = 16f873
		  00002					    #include	<p16f873.inc>
		  00001			  LIST
		  00002			�  P16F873.INC Standard Header File, Version 1.00 

Microchip Technology, Inc.
		  00358 		  LIST
		  00003
	 00000020		 00004		 X			   equ		  0x20
	 00000021		 00005		 Y			   equ		  0x21
		  00006
		  0000		  00007					    org		  0x000	; Reset vector address.
0000	 3001		  00008 				    movlw		 high MP
0001	 008A		  00009					    movwf		 PCLATH
0002	 2923		  00010					    goto		  MP
		  00011
0004				    00012					    org		  0x004	; �Interrupt vector 

address.
0004	 0009		  00013					    retfie
		  00014
0123				    00015					    org		  0x0123
0123				    00016		 MP:
0123	 01A0		  00017					    clrf	 X			   ; Sets X = 0.
0124	 0103		  00018					    clrw
0125	 3E01		  00019					    addlw	1
0126	 00A1		  00020					    movwf	Y			   ; Sets X = 1.
		  00021
		  00022					    end							       ; End of source code.

Hexadecimal file (example.hex)



Instruction Set and Assembler Language Programming	 115

:0600000001308A002329F3
:020008000900ED
:08024600A0010301013EA1002B
:00000001FF

4.4.2  The Linker MPLINK

The linker MPLINK writes the program in machine language using a 
hexadecimal format (.hex). The linker uses the following files:

One or more object files (.o) produced by the assembler•	
One or more library files (.lib) produced by the library man-•	
ager MPLIB
An auxiliary file (.lkr) that contains the description of the avail-•	
able memory for the microcontroller or any other data needed for 
the linking process

Figure 4.10 illustrates the linking process and the files involved in the 
process. When using a personal computer, the linking process can be exe-
cuted as a stand-alone process (MPLINK using the command line in DOS) 
or as part of the IDE MPLAB.

The auxiliary file (.lkr) informs the linker of the addresses for the 
program and data memory in the selected microcontroller. This allows 
the linker to assign the correct addresses to finish the whole process. It 
can also contain information needed for the linking, such as the names 
for the files to be linked if those were not specified previously. The full 

Object
modules

To PIC
programmer

.o

.o

.lib

.lib

.lkr

MPLINK

.lst (list)

.map (memory map)

.hex (hexadecimal)

.cof (debug)
Libraries

Auxiliary
file

Figure 4.10 
Linking process with MPLINK and files involved in this process. The object files (.o) are 
the output files from the assembler as a result of relocatable codification of the modules in 
assembler language. The library files (.lib) are obtained with the library manager MPLIB. 
The auxiliary file (.lkr) contains the description of available memory in the microcontroller 
so the linker can use the correct addresses. The hexadecimal file (.hex) contains the pro-
gram translated into machine language and ready to be stored in the microcontroller.



116	 Microcontrollers: Fundamentals and Applications with PIC

description of the directives to MPLINK is available in the help section of 
the IDE MPLAB on the Microchip Web site.

The available memory addresses are described in the auxiliary file using 
the linker directives databank, sharebank, and codepage. The directive 
databank specifies the name, and the initial and final addresses of the 
region in the data memory that contains a bank of registers. The direc-
tive sharebank does the same but with respect to a region that shares 
addresses in more than one register bank.

The directive codepage specifies the name, and initial and final addresses 
for a program memory region. As an option it is possible to order the 
linker to totally fill this memory region with data (14 bits in medium-
end PICs). The region can also be declared as protected, thus giving some 
restrictions in its use from the source code.

The syntax for these directives is:

databank	 name = name 	start = init_addr end = end_addr [protected]
sharebank	name = name 	start = init_addr end = end_addr [protected]
codepage	 name = name 	start = init_addr end = end_addr [protected]		
	 [fill = value]

The connection between the memory sections declared using these 
variables and the source program sections is done using the directive sec-
tion. This directive allows for declaring a section of memory as a logic 
section. Its syntax is:

section	 name = section_name	ROM = name
section	 name = section_name	RAM = name

In these directives, section_name is the symbol that identifies the sec-
tion, and name is the name of the memory region that can be program 
memory (ROM) or data memory (RAM), previously declared using the 
directives databank, sharebank, and codepage. Logic sections can be used 
in the source code program by means of the directives udata, udata_shr, 
and code.

Example 4.41

This example shows the content of the auxiliary file that contains the descrip-
tion of the memory regions in a PIC microcontroller. It also shows how to use 
in the source code the logic sections declared with the auxiliary file 16f873.lkr 
that is provided by Microchip as part of the IDE MPLAB.

	 // Sample linker command file for 16F873
	 // $Id: 16f873.lkr, v 1.5 2002/11/07 23:16:07 sealep Exp $
	 LIBPATH.
	 CODEPAGE		 NAME = vectors	 START = 0x0		 END = 0x4	 PROTECTED



Instruction Set and Assembler Language Programming	 117

	 CODEPAGE		 NAME = page0	 START = 0x5			  END = 0x7FF
	 CODEPAGE		 NAME = page1	 START = 0x800		 END = 0xFFF
	 CODEPAGE		 NAME = idlocs	START = 0x2000	 END = 0x2003PROTECTED
	 CODEPAGE		 NAME = config	START = 0x2007	 END = 0x2007PROTECTED
	 CODEPAGE		 NAME = eedata	START = 0x2100	 END = 0x217FPROTECTED
	 DATABANK		 NAME = sfr0	START = 0x0				   END = 0x1F	PROTECTED
	 DATABANK		 NAME = sfr1	START = 0x80			   END = 0x9F	PROTECTED
	 DATABANK		 NAME = sfr2	START = 0x100			  END = 0x10F	PROTECTED
	 DATABANK		 NAME = sfr3	START = 0x180			  END = 0x18F	PROTECTED
	 SHAREBANK	 NAME = gpr0	START = 0x20			   END = 0x7F
	 SHAREBANK	 NAME = gpr0	START = 0x120			  END = 0x17F
	 SHAREBANK	 NAME = gpr1	START = 0xA0			   END = 0xFF
	 SHAREBANK	 NAME = gpr1	START = 0x1A0			  END = 0x1FF
	 SECTION	 NAME = STARTUP	 ROM = vectors		 // �Reset and interrupt 

vectors
	 SECTION	 NAME = PROG1		  ROM = page0				   // �ROM code space 

- page0
	 SECTION	 NAME = PROG2		  ROM = page1				   // �ROM code space 

- page1
	 SECTION	 NAME = IDLOCS		 ROM = .idlocs		 // ID locations
	 SECTION	 NAME = CONFIG		 ROM = .config		 // �Configuration bits 

location
	 SECTION	 NAME = DEEPROM	 ROM = eedata		  // Data EEPROM

There are several sections declared in this auxiliary file. For example, the sec-
tion named PROG1 corresponds to the program memory region named page0. 
This section starts in address 005h and ends in address 7FFh.

It is possible in the source program to indicate the linker to store an instruc-
tion in this logic section. This is done by writing the directive code with the 
section name before the instructions, such as: PROG1 code.

4.4.3  Library Manager MPLIB

A library is a collection of programs in a file, more commonly a collec-
tion of subroutines grouped over a common theme. These subroutines are 
available in the library file (file.lib). For example, it is possible to create a 
library through a group of subroutines related to mathematical operations 
and call it math.lib. The file with the library can be linked with the other 
files resulting from the assembling process as shown in figure 4.10. Using 
libraries has the advantage of having a single file with all the programs 
with a common focus. When the library is linked with the object files, 
the linker only takes from the library those subroutines that the program 
calls. This limits the size of the machine language program because it 
does not contain unnecessary code.

Libraries are created using the library manager MPLIB as shown in 
figure 4.11. This program can be invoked from the command line in the 
DOS operating system or from the integrated development environment 
MPLAB.



118	 Microcontrollers: Fundamentals and Applications with PIC

Example 4.42

Processes for creating and using a library. The library to be built (librar.lib) will 
consist of three basic subroutines called SR1, SR2, and SR3. Each subroutine 
has been programmed in independent files called librar1.asm, librar2.asm, and 
librar3.asm. These files are shown below. Pay special attention to the use of the 
global directive in these files.

File librar1.asm:
	 ;
	 ; Creation of a library.
	 ; librar1.asm: this file contains subroutine SR1.
	 ;
			   list		  p = 16f873
			   #include	p16f873.inc
			   global	 SR1
			   code
	 SR1:
			   nop
			   return
			   end

File librar2.asm:
	 ;
	 ; Creation of a library.
	 ; librar2.asm: this file contains subroutine SR2.
	 ;
			   list		  p = 16f873
			   #include	p16f873.inc
			   global	 SR2
			   code
	 SR2:
			   nop
			   nop
			   return
			   end

File librar3.asm:
	 ;
	 ; Creation of a library.
	 ; librar3.asm: this file contains subroutine SR3.
	 ;
			   list		  p = 16f873

Librar1.asm

Librar2.asm

Librar3.asm

Librar.lib

MPASM

MPASM MPLIB

MPASM

Librar1.o

Librar2.o

Librar3.o

Figure 4.11 
Process to obtain a library with MPLIB. Its different components are assembled with 
MPASM, obtaining the appropriate object files (.o). The library manager MPLAB creates 
the library file (.lib).



Instruction Set and Assembler Language Programming	 119

			   #include	p16f873.inc
			   global	 SR3
			   code
	 SR3:
			   nop
			   nop
			   nop
			   return
			   end

These three files are assembled using MPASM and are processed with the 
library manager MPLIB. The resulting file is library.lib.

The file program.asm contains the source code program. In this example, it 
is also a trivial program but it uses one of the subroutines created above. Note 
the use of the directive extern in the file.

; Program that uses one subroutine from the library library.lib.
; By examining the file program.lst it is seen that the linker only 
uses the code
; that corresponds to the subroutine being called.
;
		  list		  p = 16f873
		  #include	p16f873.inc
		  extern	 SR2
Program	 code 0
;
		  call		  SR2
;
		  end

This program is assembled and linked with the file library.lib. The result of 
this process is the file program.hex that contains the object code as well as a 
list program (program.lst). It is possible to verify in this last file that the linker 
has only used the subroutine called. The following is a partial listing for the file 
program.lst:

Address Value		 Disassembly		 Source

									         ; �Program that uses one subroutine from the 
library library.lib.

									         ; �By examining the file program.lst it is 
seen that the linker only uses the code

									         ; �that corresponds to the subroutine being 
called.

								        list		  p = 16f873
								        #include	p16f873.inc
											           extern	 SR2
											           Program	 code 0
								        ;
000000	 2007		  CALL 	0x7		  call		  SR2
								        ;
								        end
								        ;
								        ; Creation of a library.
								        ; �librar2.asm: this file contains subroutine 

SR2.
								        ;
								        list		  p = 16f873



120	 Microcontrollers: Fundamentals and Applications with PIC

								        #include	p16f873.inc
											           global	 SR2
											           code
											           SR2:
000007	 0000		  NOP				    nop
000008	 0000		  NOP				    nop
000009	 0008		  RETURN			   return
											           end



121

5
Parallel Input and Output

This chapter describes the parallel input and output (I/O) resources in 
PIC microcontrollers. Parallel communication is a type of communica-
tion in which all the data bits are transferred simultaneously. Serial input 
and outputs are described in Chapter 8, and analog input and outputs are 
described in Chapter 9. This chapter starts by explaining the basic con-
cepts and techniques associated with data transfer, followed by parallel 
ports in medium-end PIC microcontrollers. Finally, this chapter illustrates 
the connection of several peripherals widely used in microcontroller sys-
tems, such as switches, light-emitting diodes (LEDs), and keypads, as well 
as seven-segment displays and liquid-crystal displays (LCDs).

5.1  Basic Concepts

A peripheral is an external device connected to the microcontroller. The 
most widely used peripherals in microcontroller systems are switches, 
LEDs, relays, keypads, seven-segment displays and LCDs, A/D and D/A 
converters, printers, and motors. All these peripherals must include the 
required interface so they can be connected to a microcontroller port.

A port in a microcontroller is a circuit, internal to the microcontroller, 
used to interface it with peripherals or external devices. Figure 5.1 shows 
the general connection between a microcontroller and a peripheral using 
an I/O port. Generally, this connection has n lines (typically n = 8) to trans-
fer data and m additional lines for data transfer control. These control lines 
may not be needed. For example, simple asynchronous I/O, described in 
further detail in Section 5.1.1, does not require control lines. It is important 
to notice that although the port shown in Figure 5.1 can transfer data in 
two directions, it is usual to find input-only or output-only ports.

From the programming point of view, ports are identified by their 
addresses that are usually part of the data memory. Therefore, at least 
one address is needed to represent the data entering or leaving the port. 
Control lines will require some additional bits in other addresses. In PIC 
microcontrollers, ports are accessed through the special function registers 
located in the data memory.



122	 Microcontrollers: Fundamentals and Applications with PIC

The basic element for any I/O port is a D latch, a device that can store 1 
bit. An 8-bit parallel port has eight D latches. A latch has one data input 
(D), a control line (G), and a data output line (Q). When G = 0 the latch is 
blocked, holding the previous value. When G = 1, the latch outputs in Q 
the value that was in the input D. When G returns to 0, the latch holds in 
Q the value that was on the input D. In some cases it may be necessary 
for the data to be available in a tri-state device as shown in Figure 5.2. It 
is then necessary to add an additional control line OE# (output enable) to 
enable the digital output (DO) tri-state line. When OE# = 1, DO is kept in 
high impedance. When OE# = 0, then DO = Q.

In an input port, the inputs D come from the peripheral and the tri-
state outputs are connected to the internal data bus in the microcontroller. 
For an output port, the connections are reversed. The following section 
describes the techniques for transferring data between the parallel port 
and the microcontroller.

5.1.1  Data Transfer Techniques

Data transfer between a peripheral and a port can be classified as:

Port Peripheral

Microcontroller

DATA

CONTROL

(n)

(m)

Figure 5.1 
Connection between microcontroller and peripheral through an I/O port. The connection 
has n data lines and m control lines.

DI

STB

OE# D Latch

D

G

Q

Q#

DO

Figure 5.2 
The basic element in an I/O port is the D latch used to store a bit. This figure shows the D 
latch with a tri-state data output. DI is the data input. The latch captures the data in DI with 
the signal STB. The signal OE# is used to enable the tri-state output DO.



Parallel Input and Output	 123

Simple input/output•	

Controlled input/output•	

Simple I/O is based on transferring the data bits between the port and 
peripheral without the use of any control signals, as shown in figure 5.3a. 
The connection of switches in the input lines or LEDs at the output lines 
in a parallel port are typical applications of simple I/O. Sometimes a syn-
chronization signal (STB, strobe) is transmitted in addition to the data 
signals to indicate when the data is available. This indication can be by 
voltage levels or by the edge of the STB signal. For example, when using 
voltage levels, when the peripheral keeps the signal STB active (STB = 1) 
it means that the data is available in the port or peripheral data pins. The 
receiving device (either the port or the peripheral) must capture the data 
in sync with STB. Figure 5.3b shows this variation of the simple I/O tech-
nique. When the indication is done by signal edge, the data must be cap-
tured in sync with the appropriate edge of the signal STB.

In controlled I/O, there is a conversation, called handshake, between 
the port and the peripheral. Controlled I/O requires two or more con-
trol signals and a protocol that the port and peripheral must follow to 
understand each other. Figure 5.4 shows two variations of controlled I/O 
using two control signals. The control signal strobe (STB) is generated by 
the device that transmits the data and the control signal acknowledgment 
(ACK) is generated by the receiver.

Data

Data

STB(8)

(a) (b)

(8)

Figure 5.3 
Simple I/O for an 8-bit parallel data transfer. (a) Simple I/O without synchronization. (b) 
Simple I/O using STB signal. STB notifies when data is ready at the data pins. This notifica-
tion can be done with voltage level (for example, STB = 1 as shown in the figure) or by its 
edges.

Data

STB

ACK

Data

STB

ACK

(8)

(a) (b)

(8)

1
1 2

3
2

Figure 5.4 
Controlled I/O for 8-bit data. (a) Simple I/O control. (b) Double I/O control.



124	 Microcontrollers: Fundamentals and Applications with PIC

In the first variation, shown in Figure 5.4a, the device transmitting the 
data sends the signal STB to the receiver indicating that the data is avail-
able at the data pins. In this case, the transmitter says to the receiver “I 
am sending you the data right now.” The receiver captures the data and 
reports the action by activating the signal ACK (ACK = 1), saying to the 
transmitter “I have received the data and I am processing it.” The trans-
mitter does not send new data until the signal ACK has been set back to 
0. By making ACK = 0, the receiver says to the transmitter “Send the next 
data.” Therefore, the signal ACK works as an indication that the receiver 
is processing the data that has been received.

The second variation of controlled I/O uses a slightly more complicated 
protocol as shown in Figure 5.4b. First, the transmitter lets the receiver 
know that it will be sending data although this data may not be available 
yet. The transmitter does this activating the signal STB (STB = 1). Here, 
the transmitter says to the receiver “I am going to send you data. Can I do 
it?” Once the receiver detects the activation of the signal STB and is able 
to accept the data, then the receiver activates the signal ACK (ACK = 1). 
Now, the receiver says to the transmitter “Send it.” The transmitter detects 
ACK = 1, indicating that it can now transmit the data. After the transmit-
ter stores the data in the data pin, it indicates to the receiver that the data 
is now available by making STB  =  0. With this, the transmitter says to 
the receiver “I am sending you the data.” The receiver captures the data, 
processes it, and when it is able to accept new data will indicate this to 
the transmitter by making ACK = 0, that is, saying to the receiver “I have 
received your data. You can send new data.”

The control signals and the logic conversation between the port and 
peripheral can be manipulated by hardware or by software. Hardware 
manipulation requires the port have circuits able to generate the signals 
STB and ACK without the intervention of the microcontroller. Software 
manipulation means that a program specifically created for this purpose 
generates the signals. PIC microcontrollers have parallel ports of up to 8 
bits, all of them independent. They do not have specialized ports to imple-
ment hardware manipulation of the control signals; for this reason, con-
trolled I/O must be implemented using software.

5.1.2 I nput/Output Techniques

The two most commonly used techniques to service a peripheral con-
nected to a microcontroller are:

Programmed input/output•	

Interrupt input/output•	



Parallel Input and Output	 125

Programmed I/O is basically a software technique. It needs bits to 
indicate the status of the peripheral (ready or not ready). The program 
asks if the peripheral needs attention; if the response is affirmative, it 
carries out the appropriate action, which is normally the writing or read-
ing of data in the port connected to the peripheral. If the response is 
negative, the program performs other tasks or simply waits until the 
peripheral is ready.

Figure 5.5 shows the algorithms used by the two main variants of pro-
grammed I/O: polling I/O and waiting I/O. In polling I/O, the microcon-
troller carries out other tasks if the peripheral is not ready to transmit or 
receive data. In waiting I/O, the microcontroller waits until the peripheral 
is ready. Obviously, polling I/O manages the time for the microcontroller 
better.

The main characteristic of the interrupt I/O technique is that the periph-
eral indicates the need for attention. This is done by sending an interrupt 
request to the microcontroller. When the microcontroller receives this sig-
nal, it interrupts the execution of the program and moves toward execut-
ing the interrupt subroutine. When the microcontroller finishes with the 
request from the peripheral, it continues with the program that had been 
interrupted. Interrupt I/O uses a combination of hardware and software. 
The hardware part is based on the circuits needed to request and execute 
the interrupt that will be studied in further detail in Chapter 7.

In both I/O techniques, the data transmission speed between peripheral 
and microcontroller is ultimately limited by the speed in executing instruc-
tions, because this execution is based on reading or writing data using 
the appropriate instructions. Furthermore, the data transferred between 
memory and the I/O ports normally have to move through the CPU, thus 
further limiting the speed of the process. Microprocessor systems utilize 
a third I/O technique to bypass these limitations by using direct memory 

Peripheral ready?

no

yes

Attend peripheral

(a) (b)

Peripheral ready?

yes

no

Attend peripheral

Figure 5.5 
Variations of programmed I/O. (a) If peripheral is not ready, the program continues to work 
on other tasks. (b) If peripheral is not ready, the program waits until it is ready.



126	 Microcontrollers: Fundamentals and Applications with PIC

access (DMA). DMA is a hardware-implemented I/O technique based on 
the direct data transfer between peripheral and memory without having 
to execute a program, thus allowing for very high data-transfer rates. This 
technique is, however, used in very few microcontrollers. None of the PIC 
microcontrollers use DMA for I/O.

5.2  Parallel Ports in Medium-End PIC Microcontrollers

Medium-end PIC microcontrollers can have up to seven parallel ports 
named PORTA, PORTB, PORTC, …, PORTG, with each of them having up 
to 8 bits. The pin ports are identified as RA<x>, RB<x>, …, RG<x> in which 
x is the number of the bit (x = 0, 1, …, 7). Generally, each port line can be 
programmed as an input or as an output. Most of the pins in the I/O ports 
can carry out several functions. For example, the same pin can work as a 
digital input or output, or can be an analog input to the A/D converter, 
or can carry signals to or from the timers. Some PIC microcontrollers also 
have a parallel slave port (PSP) that behaves like an 8-bit generic bus with 
lines to control data transfer between the PIC and the peripheral. When a 
PIC microcontroller has a PSP it shares its pins with ports D and E.

Each parallel port has two special function registers used to manipu-
late the port. These registers are called PORT and TRIS (PORTA, TRISA, 
PORTB, TRISB, etc.). The PORT registers store the output data and the 
TRIS registers are used to program each line in the port as an input or as 
an output line.

Each bit in the TRIS register is programmed as:

	 TRIS<x> = 1	Programs port line <x> as an input.
	 TRIS<x> = 0	Programs port line <x> as an output.

Figure 5.6 shows the basic schematic for an I/O pin. The circuit contains 
two D latches: one of them is used to store the output data, while the other 
is used to store the control bit TRIS<x>. The I/O pin is manipulated by the 
two MOS transistors in totem-pole configuration. In this configuration, 
transistor T1 (P-channel transistor) is ON when the gate voltage is 0 and 
OFF when the gate voltage is 1. Transistor T2 (N-channel transistor) works 
in the opposite way. The totem pole is driven by an AND and an OR gate 
from the latches. From the circuit it is possible to realize that if the control 
latch stores a 1, both transistors are OFF. This causes the I/O port to be in a 
high-impedance state (third state), therefore acting like a data input pin. If 
the control latch stores a 0, the I/O port becomes an output pin. The value 
at the pin is equal to the value stored in the data latch. Table 5.1 shows the 
truth table for this circuit.



Parallel Input and Output	 127

As seen in Figure 5.6, this circuit uses an additional D latch that stores 
the state of the I/O pin when it has been configured as an input pin. The 
input D to this third latch is the voltage in the I/O pin connected through a 
noninverting gate that can be a TTL (transistor transistor logic) or Schmitt 
trigger. Writing data in a port means to write in the appropriate latch, 
whereas reading the bit in a port is equivalent to reading the logic state 
(voltage value) in the pin. This means that if data is written in an output 
port and this port is read, the value may be different. This can happen 
especially if the maximum value for output currents is exceeded.

Table 5.1
Truth Table for the Circuit in Figure 5.6

Control Data G1 G2 T1 T2 I/O Pin

1 x 1 0 OFF OFF Input: Hi Z
0 0 0 0 OFF ON Output: VSS (0)

1 1 1 ON OFF Output: VDD (1)

BDAT Data
D

CK#

Output data latch
(PORT<x>)

Control latchl
(TRIS<x>)

G1

G2
T2

T1

P

I/O Pin

VDD

VSS

Control

Q#

Q

D

CK# Q#

Q

Q D

G
Input data latch

(PORT<x>)

TTL or
Schmitt Trigger

N

WR_PORT

WR_TRIS

RD_TRIS

RD_PORT

Figure 5.6 
Basic schematic for a I/O pin in a medium-end PIC microcontroller.



128	 Microcontrollers: Fundamentals and Applications with PIC

When connecting devices to the port pins it is necessary to take into 
account the power limitations for the microcontroller. Each I/O pin can 
source or sink a maximum value of current. Furthermore, the total cur-
rent sourced or sunk by all the port pins cannot exceed a certain value. 
This value is normally lower than the sum of all the allowed individual 
currents for each pin in the port. Finally, to keep the voltage in the output 
pin within the limits for the logic values 0 and 1, it is necessary to keep 
the output currents for high level (IOH) and low level (IOL) within the limits 
specified by the manufacturer. All the devices must comply with these 
specifications described in the manufacturer’s data sheets.

Example 5.1

The following voltage and current values for the PIC16F873 pins are given by its 
manufacturer. Each I/O design must take them into consideration.

	 1.	Maximum sunk current by any pin: 25 mA.
	 2.	Maximum sourced current by any pin: –25 mA.
	 3.	Sourced or sunk current for port C or by ports A and B together cannot 

exceed 200 mA.

Typical values for input and output voltages:

	 1.	Logic value 0 in an input pin: Voltage in this pin is VIL < 0.75 V (TTL 
input) or VIL < 1.0 V (Schmitt trigger input) with VDD = 5.0 V.

	 2.	Logic value 1 in an input pin: Voltage in this pins is VIH > 2.0 V (TTL 
input) or VIH > 4.0 V (Schmitt trigger input) with VDD = 5.0 V.

	 3.	Output voltage for logic value 0: VOL < 0.6 V if output current sunk by pin 
is IOL < 8.5 mA with VDD = 4.5 V.

	 4.	Output voltage for logic value 1: VOH > VDD – 0.7 V = 3.8 V if output cur-
rent sourced by pin is IOH < –3.0 mA with VDD = 4.5 V.

The selective or individual manipulation of bits in a port requires some 
caution. In reality, PIC microcontrollers do not have the necessary hard-
ware in their ports to exclusively manipulate an output bit. Therefore, to 
modify a single bit, all the bits in the port need to be written. Even the 
specific bit manipulation instructions, such as bcf and bsf used to set any 
bit to 0 or 1, operate by reading the register, modifying the bit specified 
in the instruction, and writing the resulting word back in the register. 
That is, the selective modification of a bit in a register is an operation that 
involves reading, modification, and writing the complete register. When 
modifying a bit in the data register, this operation is transparent for the 
programmer. However, when the bit being modified is a bit in the PORT 
register of a parallel port, the manner in which this operation is carried 
out may produce unexpected results in the other port bits. This is because 
when a port is read, the value that is actually read is the status of its pins 



Parallel Input and Output	 129

and not the value stored in the port. Therefore, the resulting value may be 
different from the real value in the PORT register.

5.2.1  Port A

Port A can have up to 8 bits although most of the medium-end PIC micro-
controllers (such as the PIC16F873) have only 6 bits implemented. These 
bits correspond to pins RA0 to RA5. All these pins can be configured as 
input or output terminals. RA4 is a Schmitt trigger input and when pro-
grammed as an output it becomes an open-drain output. The special func-
tion registers associated with port A are PORTA and TRISA.

Port A pins may be shared with the inputs for the A/D converter if the 
microcontroller has one, such as in the case for the PIC16F873. In this case, 
port A pins can be digital or analog. This is programmed with the spe-
cial function register ADCON1. The pin RA4 is also used as the external 
clock input for the timer Timer0. In this case, the pin is called RA4/T0CK1. 
Table 5.2 shows the functions of the port A pins in a PIC16F873.

Example 5.2

Port A pins are also analog inputs for those PICs that incorporate an internal 
A/D converter. This example shows how to program port A for microcontrollers 
without an internal A/D converter as well as those with it.

Initialize port A (PIC without internal A/D converter):

clrf	 STATUS		  ; �Select bank 0.

clrf	 PORTA		  ; �Set PORTA register to 0.

bsf	 STATUS, RP0	 ; �Select bank 1.

movlw	 0xCF		  ; �Value in TRISA to program

movwf	 TRISA		  ; RA<3:0> as inputs and RA<5:4>  

				    ; as outputs.

Table 5.2

Pin Functions in PIC16F873

Name Function

RA0/AN0 Digital input/output or analog input

RA1/AN1 Digital input/output or analog input

RA2/AN2 Digital input/output or analog input

RA3/AN3/VREF Digital input/output or analog input, or reference voltage for 
A/D converter

RA4/T0CKI Digital input/output or external clock input for Timer0. 
Open-drain output

RA5/SS/AN4 Digital input/output or input for selection synchronous serial 
port or analog input



130	 Microcontrollers: Fundamentals and Applications with PIC

bcf	 STATUS, RP0	 ; Select bank 0.

Initialize port A (PIC with internal A/D converter):

bcf	 STATUS, RP0	 ; �Select bank 0.
bcf	 STATUS, RP1	 ;
clrf	 PORTA		  ; �Set PORTA register to 0.
bsf	 STATUS, RP0	 ; �Select bank 1.
movlw	 0x06		  ; �Configure all port terminals
movwf	 ADCON1		  ; �as digital input or outputs.
movlw	 0xCF		  ; �Value in TRISA to program
movwf	 TRISA		  ; RA<3:0> as inputs and RA<5:4> 
				    ; as outputs.
bcf	 STATUS, RP0	 ; �Select bank 0.

5.2.2  Port B

Port B has 8 bits with pins called RB0 to RB7. All these pins can be config-
ured as input or output pins using the special function register TRISB. The 
special function register PORTB is used to write data in port B. Table 5.3 
shows the function of the port B pins in a PIC16F873. Each port B pin has 
an internal pull-up circuit that can be programmed with the bit RBPU# in 
the special function register OPTION (bit OPTION <7>). This bit enables 
or disables the pull-up in port B.

Table 5.3

Port B Pins in PIC16F873

Name Function

RB0/INT Digital input/output; external interrupt input

RB1 Digital input/output

RB2 Digital input/output

RB3/PGM Digital input/output; in-circuit programming pin

RB4 Input/output. As input pin, interrupts may be programmed by a change 
in logic level.

RB5 Input/output. As input pin, interrupts may be programmed by a change 
in logic level.

RB6/PGC Input/output. As input pin, interrupts may be programmed by a change 
in logic level. In-circuit programming pin.

RB7/PGD Input/output. As input pin, interrupts may be programmed by a change 
in logic level. In-circuit programming pin.

Note: 	 All pins have a software-programmable internal pull-up circuit. RB0 can be used as 
an external interrupt input. A voltage change in inputs RB4 to RB7 can generate an 
interrupt request. Pins RB3, RB6, and RB7 are used for in-circuit programming. This 
allows for programming the microcontroller in the same board that will be used to 
run the intended application.



Parallel Input and Output	 131

An important aspect of port B is that it can generate an interrupt request 
by changing the logic level in any of the pins RB4 to RB7. If these pins are 
programmed as inputs, a change in the input logic level from 0 to 1 or 
from 1 to 0 generates an interrupt. This change can be produced, for exam-
ple, by pressing a key connected to one of the port pins. When this type of 
interrupt is produced, bit RBIF in the INTCON register (bit INTCON <0>) 
is set at 1. The bit RBIE in the INTCON register (bit INTCON<3>) is used 
to enable or disable interrupts. This interrupt can be used to wake up the 
microcontroller from a low-power mode.

Pin RB0 can also accept an edge-triggered external interrupt request. In 
this case, the pin is called RB0/INT. This interrupt is reported in bit INTF 
in the INTCON register (bit INTCON <1>) and is enabled or disabled by 
bit INTE in the INTCON register (bit INTCON <4>). The bit INTEDG in 
the OPTION register (bit OPTION <6>) selects the interrupt for the raising 
or falling edge.

Pins RB3, RB6, and RB7 in port B can be used for In-Circuit Serial 
Programming (ICSP). This is a resource in PIC microcontrollers that allow 
programming of the device on the same board that will be used to execute 
the intended application. The program is sent to the OTP, EEPROM, or 
flash memory using a serial transmission format through these pins. See 
the device programming specification before using this resource.

5.2.3  Port C

Port C is an 8-bit parallel port with pin names RC0 to RC7. Writing in port 
C is done by using the special function register PORTC. All pins can be 
configured as Schmitt trigger inputs or digital outputs using the special 
function register TRISC. Pins in port C share functions with other input 
and output devices: Timer1, the Compare/Capture/PWM (CCP) module, 
and the Synchronous Serial Port (SSP) or Master Synchronous Serial Port 
(MSSP), and Universal Synchronous Asynchronous Transmitter Receiver 
(USART). These functions are shown in table 5.4 for the PIC16F783.

5.2.4  Ports D, E, F, and G

Ports D, E, F, and G are parallel ports of up to 8 bits. All pins can be pro-
grammed as digital inputs or outputs. When configured as inputs, they 
are Schmitt trigger inputs. When these ports exist, their functions are 
shared with the functions from the PSP. Some of the pins in port E can 
also be used as analog inputs in addition to those existing in port A. The 
special function registers associated with ports D and E are PORTD and 
PORTE for data, and TRISD and TRISE for control. The PIC16F874 has 
ports D and E, but the PIC16F873 does not have them.

Ports F and G are parallel ports of up to 8 bits with Schmitt trigger 
inputs. Their function is shared with the outputs for LCD drivers. Ports 



132	 Microcontrollers: Fundamentals and Applications with PIC

F and G only exist in those microcontrollers specifically manufactured to 
drive LCDs directly.

5.2.5  Parallel Slave Port (PSP)

The PSP is an 8-bit directional port that carries control signals to read 
and write data from an external device. The PSP can be used to connect 
the microcontroller directly to the data and control bus in a microproces-
sor- or microcontroller-based system. This makes the PIC with the PSP 
become an I/O port of that system as shown in Figure 5.7a.

For those microcontrollers that incorporate a PSP, such as the PIC16F874, 
the PSP is implemented in the pins for ports D and E. PSP has eight data 
lines (PSP<0:7>) and three control lines for reading data (RD#), writing 
data (WR#), and selection (CS#). The PSP data lines are implemented 
on the pins RD<0:7> and the control lines are implemented on the pins 
RE<0:2>. When the system external to the PIC wants to write or read data 
from the PIC using the PSP, it must select the device with CS# = 0 during 
data writing or reading. If CS# = 1, the data lines are kept at high imped-
ance. During the reading process, the data pins act as outputs; during the 
writing process the data pins act as inputs. Figure  5.7b shows the PSP 
signals during the writing and reading cycles.

Three bits in the microcontroller inform of the state of the PSP. These 
are bits IBF and OVF in the TRISE register and bit PSPIF in the register 
PIR1. The input buffer full (IBF) bit is set to 1 when the PORTD register 
holds data written in the PSP from outside; IBF is set automatically to 
0 when the program reads the input data in PORTD. The output buffer 

Table 5.4

Port C Pins in the PIC16F873

Name Function

RC0/T1OSO/T1CKI Digital input/output or output for Timer 1 or clock input for 
Timer 1

RC1/T1OSI/CCP2 Digital input/output or input for Timer 1 or clock input for 
Timer 1 or pin for CCP2 module

RC2/CCP1 Digital input/output or pin for module CCP1

RC3/SCK/SCL Digital input/output or pin for synchronous serial port

RC4/SDI/SDA Digital input/output or pin for synchronous serial port

RC5/SDO Digital input/output or pin for synchronous serial port

RC6/TX/CK Digital input/output of pin for USART serial port

RC7/RX/DT Digital input/output of pin for USART serial port

Note: 	 All inputs are Schmitt trigger inputs.



Parallel Input and Output	 133

full (OBF) bit is set to 1 when the program writes data in the PORTD 
register. This data must leave the microcontroller through the PSP pins. 
OBF is set to 0 when the external device has read that output data in the 
PORTD register.

The PSP interrupt flag (PSPIF) bit is set to 1 each time data is read or writ-
ten from the exterior. It must be reset to 0 by software once the program 
has serviced the PSP transfer. PSPIF = 1 generates an interrupt request 
if the PSP has its interrupts enabled. Setting the PSP interrupt enabled 
(PSPIE) bit to 1 enables these interrupts.

The management of data input/output through the PSP can be either 
programmed or performed by interrupts. Programmed I/O is carried out 
by checking bits PSPIF, IBF, and OBF. In interrupt I/O, the program that 
handles the PSP interrupt must check bits IBF and OBF to find out the 
type of transfer that happened between the PSP and the exterior.

Peripheral

PSP<0:7>

PIC
System with

microprocessor

RD#
WR#
CS#

PSP<0:7> Data Data

Writting

(a)

(b)

Reading

CS#

WR#

RD#

BDAT

RD#
WR#
CS#

Figure 5.7 
The parallel slave port (PSP) is an 8-bit bidirectional bus with control signals to transfer 
data between the PIC and an external device. (a) Potential use of a PSP to directly con-
nect the PIC to a data bus in a system with a microprocessor or microcontroller. The PIC 
becomes an I/O port of this system. (b) Signals involved in I/O data transfer using the 
PSP.



134	 Microcontrollers: Fundamentals and Applications with PIC

5.3  Connection of Commonly Used Peripherals

5.3.1  Switches and LEDs

Switches and LEDs are I/O devices commonly used in systems with micro-
controllers. Figure  5.8 shows three possible ways for connecting these 
devices to the pins in port B of a PIC microcontroller.

LED1 is ON when the pin RB<i>, which should have been configured 
as a digital output, is low. In this configuration the LED1 current I1 enters 
into the port pin. To keep the 0 logic level when LED1 is ON, it is neces-
sary that

	 I1 ≤ IOLmax	 (5.1)

with IOLmax being the maximum output current for the pin to stay at a logic 
low level.

LED2 is ON when with the pin RB<j> is high. In this configuration the 
LED2 current leaves the pin. For the pin to maintain its high logic level, it 
is necessary that

	 I2 ≤ IOHmax	 (5.2)

with IOHmax being the maximum output current for the pin to stay at a 
high level.

In general, |IOLmax | > |IOHmax|, making condition 5.1 easier to meet than 
condition 5.2. For this reason, when connecting LEDs to the parallel ports 
it is recommended to use the configuration as shown for LED1.

PIC

LED1

LED2

RB<i>

RB<j>

RB<k>

K

RK

VDD

RL1

RL2

VDD

VSS

Figure 5.8 
Connection of LEDs and switches to port B in a 
PIC microcontroller.



Parallel Input and Output	 135

Example 5.3

Using a PIC16F873, connect 2 LEDs and a switch as shown in Figure  5.8. 
Calculate the values of resistances RL1, RL2 assuming the voltage supply is 
VDD = 5 V.

The LEDs most commonly used as indicators have forward current IF = 10 mA 
and forward voltage about 2.0 V. These values change slightly depending on 
the LED color.

With IF = 10 mA and VRB<i> = VOL (VOL = 0.35 V for IOL = 10 mA, from PIC data 
sheet), the value for RL1 for a red LED (VF = 1.6 V), is

	
R V V V

IL1
DD F OL

F
Ω=

− −
=
− −

=
5 1 6 0 35

0 01
305. .

.
.

With IF = 10 mA and VRB<j> = VOH (VOH = 4.3 V for IOH = 10 mA, from the PIC 
data sheet), the value for RL2 is

	
R V V

IL2
OH F

F
Ω=

−
=

−
=

4 3 1 6
0 01

270. .
.

.

The value for the resistance in series with the LED is not critical. Therefore 
it is possible to use standard values with tolerances of 5% or even 10%. This 
example could use RL1 = 300 Ω and RL2 = 270 Ω, with 5% tolerance.

Switches are connected to digital inputs. Switch K in Figure 5.8 is con-
nected to the input RB<k>. In this configuration, when the switch is closed, 
the voltage at the pin is 0 V (low level). When the switch is open, the pull-
up resistance RK guarantees a high level at the pin input. The value of the 
pull-up resistance can be on the order of tens of kiloohms because the 
input current to the microcontroller is very low. Pins in port B have an 
internal pull-up that can be connected or disconnected using the bit RBPU 
in the OPTION register. If the switches are connected to pins in terminal 
B and the internal pull-ups have been connected, it is not necessary to use 
the external resistors RK.

Mechanical switches are essentially two metallic pieces that come in 
contact with each other. These mechanical switches are affected by a 
problem known as bouncing. When a switch is being open or closed, 
the metallic pieces do not reach their final position immediately; instead 
they act like a ball being dropped on the floor—they bounce for a certain 
period of time. This originates fast changes in the contact resistance before 
the switch reaches its steady state as shown in Figure 5.9. This bouncing 
may cause a single switch action, either opening or closing, to be under-
stood by the microcontroller as a series of successive switch activations 
and deactivations.



136	 Microcontrollers: Fundamentals and Applications with PIC

Bouncing can be solved by using hardware or software methods. A 
basic hardware solution is to use a nonmechanical switch such as Hall-
effect switches or wet-contact (mercury) switches that are not affected 
by bouncing. However, the number of available models for this type of 
switch is very limited compared to the traditional mechanical models. A 
better hardware solution is to connect the mechanical switch to the input 
of a monostable circuit that will increase the time for the first detected 
pulse long enough to mask the pulses produced by bouncing. This solu-
tion, however, increases the size and cost of the design.

Software solutions are based on reading the state of the switch a certain 
amount of time after the switch was first activated. A delay of about 20 
ms is normally long enough to ensure that the switch has reached a stable 
state. Example 5.4 shows how to implement this solution.

Example 5.4

This example shows how to read the state of a switch connected to bit k in 
port B as shown in the circuit in figure 5.8. The problem of switch bouncing is 
solved by software using the algorithm shown in figure 5.10.

In this algorithm, the state of the switch is first read and stored in a regis-
ter (TEMP) in the microcontroller. After waiting 20 ms to ensure there are no 
bouncing effects, the state of the switch is read again. If the values obtained 
in both cases are the same, then the readings are validated having ensured the 
correct reading of the state of the switch. However, if the values are different, 
it means that there are still bouncing effects. In this case, the microcontroller 
continues reading the state of the switch at 20 ms intervals until the two values 
are equal.

The subroutine READ_K shown below implements the algorithm shown in 
figure 5.10.

		  list p = 16f873
		  #include <p16f873.inc>
TEMP	 equ	 0x20		  ; �Register for intermediate data storage.
k		  equ	 3			   ; �Number of bit in port B to which the
							       ; �switch is connected.
; READ_K: Subroutine to read the read the state of a switch  
; connected to port B
; 		 avoiding bouncing effects
; 		 Inputs: None
; 		 Outputs: In W<0>, the value of bit PORTB<k>

PORTB<k> ‘1’ ‘1’‘0’

<20 ms <20 ms

Figure 5.9 
Bouncing in mechanical switches. When the switch opens or closes, the mechanical pieces 
vibrate generating fast contacts before settling. This transient normally lasts less than 20 ms.



Parallel Input and Output	 137

READ_K:

	 btfss		 PORTB, k	; �Read port B. Is bit PORTB<k> = 1?

	 goto		  K0			  ; �No: store 0 in TEMP.

	 movlw		 1			   ; �Yes: store 1 en TEMP.

	 movwf		 TEMP		  ; �TEMP to 1.

	 goto		  K1

K0:

	 clrf		  TEMP		  ; �TEMP to 0.

K1:						      ; �Value of PORT<k> is in TEMP.

							       ;

	 call		  DEM20		 ; �Wait 20 ms.

							       ;

	 btfss		 PORTB,k	 ; �Read again port B. PORTB<k> = 1?

	 goto		  K2			  ; �No: Store 0 in W.

	 movlw		 1			   ; �Yes: Store 1 in W.

	 goto		  K3

K2:

	 clrw					     ; �W in 0.

K3:						      ; �Value of PORT<k> is in W.

	 xorwf		 TEMP,W	 ; Compare the two read values. If they are equal,  

							       ; store

							       ; �0 in W. Z is activated. TEMP does not change.

	 btfss		 STATUS,Z	; �TEMP = W? Z = 1?

	 goto		  READ_K	 ; �No: Switch still bouncing. Read PORTB<k> again.

K4:						      ; �Yes: Bouncing ended. Finish subroutine.

	 movf		  TEMP, W	 ; �Store value of PORTB<k> in W and

	 return				    ; �return.

; �DEM20: Routine to wait for 20 ms.

DEM20

	 ;

	 ; �Write here the code for this subroutine.

	 ;

	 return

	 end

READ_K

TEMP = PORTB<k>

Wait 20 ms

W = PORTB<k>

TEMP = W?

Return with the value of PORTB<k> in W

yes

no

Figure 5.10 
Algorithm used to read a switch solving the 
problem of bouncing. The switch is connected 
to bit k in port B as shown in Figure 5.8. TEMP 
is a data memory register and W is the working 
register.



138	 Microcontrollers: Fundamentals and Applications with PIC

5.3.2  Matrix Keypads

Matrix keypads consist of keys interconnected in the shape of a matrix. 
Each key is a simple mechanical switch located at the crossing between 
the matrix rows and columns. When a key is pressed, its row and column 
form an electrical contact. Row and columns can be connected to the pins 
of one or more parallel ports. Figure 5.11 shows a 16-key matrix keypad 
arranged in four rows and four columns.

The state for a matrix keypad can be explored by sending signals 
through its rows (exploration lines) and reading the information received 
through its columns (return lines). When none of the keys are pressed, all 
the return lines will have the logic state 1. The exploration lines are then 
set to 0 either simultaneously or sequentially. Only the return line that 
links the pressed key with its exploration line will read a low logic value. 
The rest of the return lines will be read as 1. The information sent to and 
received from the matrix makes up a code unique for each key, known as 
an exploration code. To ensure that the return lines are kept at 1 when no 
keys are pressed, it is necessary to connect resistors between each return 
line and the voltage supply VDD as shown in figure 5.11.

The procedure to service matrix keypads is as follows:

Step 1: Wait until the keypad is clear (due to an earlier key pressed).

Step 2: Detect that a new key has been pressed.

Step 3: Explore the matrix keypad to determine the key that was 
pressed. The exploration code, containing the row and column 
numbers is generated in this step. The exploration code can be 
generated in two ways:

Exploration
lines

1

4

7

*

Return lines

R
2

5

8

0

R
3

6

9

#

R
A

B

C

D

R

VDD

Figure 5.11 
A 16-key matrix keypad.



Parallel Input and Output	 139

Sequential exploration of rows. This method sets the first row •	
to 0 and reads all the columns. If none of the columns is read 
at 0 it means that the pressed key is not in that row. Then the 
next row is set to 0, and the columns are read again. This pro-
cess is repeated until a 0 is found in a column. This deter-
mines the row and column for the pressed key, thus giving the 
exploration code for that key.

Simultaneous exploration of rows and columns. This method •	
sets all the rows to 0 and reads all the columns. This detects 
the column that contains the pressed key but not its row. Then 
the process is inverted: all the columns are set to 0 and the 
rows are read. This detects the row that contains the pressed 
key. This gives the row and column for the pressed key, and 
thus the exploration code for the key.

The simultaneous exploration method allows exploring the keypad 
faster, in only two steps. However, it requires the exploration and return 
lines to be bidirectional (although this is not a problem in PIC microcon-
trollers, it can be a problem in other devices). The sequential explora-
tion method is slower but allows for exploration and return lines to be 
unidirectional.

Figure 5.12 shows the algorithm for the sequential exploration method. 
This basic algorithm could be improved by adding the necessary steps to 
check for the validity of the read code, as well as to determine if more than 
one key had been pressed simultaneously. When using an alphanumeric 
keypad, for example, the algorithm could be further improved by convert-
ing the exploration code into the ASCII code for the pressed key.

Example 5.5

Subroutine for servicing a 16-key matrix keypad connected to port B of a 
medium-end PIC microcontroller.

Figure 5.13 shows a possible method for connecting the matrix keypad to 
port B. When comparing this approach to the schematic shown in figure 5.11, 
there are two main differences. First, the return lines do not have pull-up resis-
tors because the pins in port B have internal pull-ups that guarantee a 1 in the 
return lines with no key being pressed. Second, there are four diodes (D) in the 
exploration lines. These diodes are used to limit the current in pins RB0 to RB3 
if two keys in the same column were pressed at the same time. These diodes 
could be substituted by resistors between 1 kΩ and 2.2 kΩ.

The subroutine READKEY explores the matrix keypad following the algo-
rithm shown in figure 5.12. This subroutine returns the exploration code for the 
pressed key. Table 5.5 shows the exploration codes.

The code for the subroutines INITKEY and READKEY are shown below. The 
subroutine INITKEY is used to prepare port B to service the keypad.



140	 Microcontrollers: Fundamentals and Applications with PIC

READKEY

Set all files to ‘0’

Read all columns
simultaneously

Read all columns
simultaneously

Read all columns
simultaneously

All columns to 1?

Any column is 0?

Set all rows to 0

yes

no

Wait 20 ms

Write ‘0’ in row i

yes

Key pressed in row
i, column j

yes

no

no

no

False key
pressed Return

si

0 in column j?

j = j + 1

i = i + 1

j = M?

i = N?

i = 0

j = 0

yes

no

Figure 5.12 
Algorithm to read an N-row, M-column matrix keypad using sequential exploration. The 
algorithm waits until a key is pressed and returns its position (row i, column j).



Parallel Input and Output	 141

Table 5.5

Exploration Codes Returned by the Subroutine READKEY When 
Exploring the Keypad Shown in Figure 5.13

Key Row (Binary) Column (Binary)
Exploration Code 

(Hexadecimal)

1 00 00 00

2 00 01 01

3 00 10 02

4 01 00 04

5 01 01 05

6 01 10 06

7 10 00 08

8 10 01 09

9 10 10 0A

0 11 01 0D

* 11 00 0C

# 11 10 0E

A 00 11 03

B 01 11 07

C 10 11 0B

D 11 11 0F

D

D

D

D

1

4

7

*

2

5

8

0

3

6

9

#

A

B

C

D

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7PIC

Figure 5.13 
A 16-key matrix keypad connected to port B in a PIC. Diodes are used to avoid short circuits 
between two exploration lines if two or more keys in the same column are pressed simulta-
neously. This configuration uses the internal pull-up (not shown) available in port B to keep 
a logic 1 in the return lines when no keys are pressed.



142	 Microcontrollers: Fundamentals and Applications with PIC

			   list p = 16f873
			   #include	<p16f873.inc>
; Declarations:
		  TEMP		  equ	 0x20				    ; Temporary register used by  
												            ; subroutines.
		  ROW		  equ	 0x21				    ; Temporary register used by  
												            ; subroutines.
		  COLUMN	 equ	 0x22				    ; Temporary register used by  
												            ; subroutines.
		  ; INITKEY: Subroutine to program port B.
		  INITKEY:
				    clrf		  STATUS			   ; Select bank 0.
				    bcf		  INTCON,INTE	 ; �Disable external interrupt by 

RB0.
				    bcf		  INTCON, RBIE 	; �Disable interrupt by changes in 

RB<7:4>.
				    movlw		 0FFh				    ; Store value in PORTB.
				    movwf		 PORTB				   ; Set all outputs in port B to ‘1’.
				    bsf		  STATUS, RP0		 ; Select bank 1.

				    movlw		 0F0h				    ; �Load this value in TRISB  

to program

				    movwf		 TRISB				   ; �RB<3:0> as outputs and RB<7:4> as 

inputs.

				    bcf		  OPTION_REG, 	 ; Enable internal pull-ups in port  

							       NOT_RBPU			  ; B.

				    bcf		  STATUS, RP0 	 ; �Select bank 0.

				    return

		  ; READKEY: Subroutine for exploring matrix keypad.

		  ; This subroutine waits for a key being pressed. It returns its  

		  ; exploration code in W.

		  ; Inputs: none

		  ; Outputs: Exploration code in W. Bits W<3:2> contain the  

		  ; column for the pressed key. Bits W<1:0> contain the row.

		  ;

		  READKEY:

				    movlw		 0F0h

				    movwf		 PORTB				   ; Set all rows to ‘0’.

				    nop

		  KEY10:								        ; Waits for keypad being free:

				    movf		  PORTB, W 		  ; Read all columns simultaneously.  

												            ; Low part of W
												            ; is 0. High part of W, if a key is  
												            ; already pressed the bit
												            ; that corresponds to the return  
												            ; line for the key
												            ; is 0. The other bits are 1.
				    xorlw		 0F0h				    ; Reverse situation. High part of W:  
												            ; Bit
												            ; corresponding to returning line in  
												            ; pressed key
												            ; is 1. Other bits are 0. Low part  
												            ; of W
												            ; does not change. Z becomes active  
												            ; if no key is pressed.
				    btfss		 STATUS, Z		  ; All keys open? Z = 1?
				    goto		  KEY10				   ; No – wait for keypad being free.



Parallel Input and Output	 143

		  KEY20:								        ; �Yes – continue. Wait for a key 
being pressed.

				    movlw		 0F0h
				    movwf		 PORTB				   ; All rows to ‘0’.
				    nop
				    movf		  PORTB, W			  ; Read all columns simultaneously.
				    xorlw		 0F0h				    ; Z = 0 if a key is pressed.
				    btfsc		 STATUS, Z		  ; Any pressed key? Z = 0?
				    goto		  KEY20				   ; No – Wait for pressed key.
		  KEY30:								        ; Yes – continue.
				    call		  DELAY20			   ; 20 ms delay for debouncing.
		  KEY40:								        ; Explore keypad rows to find out
				    movlw		 0FFh				    ; what is the pressed key.
				    movwf		 PORTB				   ; All rows to ‘1’.
				    nop
		  ROW0:									        ; Explore row 0:
				    movlw		 0
				    movwf		 ROW
				    bcf		  PORTB, 0			  ; Set row 0 to 0 (RB0).
				    nop
				    movf		  PORTB, W			  ; Read all columns simultaneously.
				    call		  IDENTIFY			  ; If a key is pressed, identify  
												            ; column
												            ; for key.
				    btfsc		 STATUS, C		  ; Pressed key? C = 1?
				    goto		  KEY50				   ; Yes – Found pressed key. Finish  
												            ; exploration.
				    bsf		  PORTB, 0			  ; No – Set explored row to 1 and  
												            ; move to next.
				    nop
		  ROW1:									        ; Explore row 1:
				    movlw		 1
				    movwf		 ROW
				    bcf		  PORTB, 1			  ; Set row 1 to 0(RB1).
				    nop
				    movf		  PORTB, W			  ; Read all columns simultaneously
				    call		  IDENTIFY			  ; If a key is pressed, identify  
												            ; column
												            ; for key.
				    btfsc		 STATUS, C		  ; Pressed key? C = 1?
				    goto		  KEY50				   ; Yes – Found pressed key. Finish  
												            ; exploration
				    bsf		  PORTB, 1			  ; No – Set explored row to 1 and  
												            ; move to next.
				    nop
		  ROW2:									        ; Explore row 2:
				    movlw		 2
				    movwf		 ROW
				    bcf		  PORTB, 2			  ; Set row 2 to 0 (RB2).
				    nop
				    movf		  PORTB, W			  ; Read all columns simultaneously
				    call		  IDENTIFY			  ; If a key is pressed, identify  
												            ; column
												            ; for key.
				    btfsc		 STATUS, C		  ; Pressed key? C = 1?
				    goto		  KEY50				   ; Yes – Found pressed key. Finish  
												            ; exploration
				    bsf		  PORTB, 2			  ; No – Set explored row to 1 and  
												            ; move to next.
				    nop
		  ROW3:									        ; Explore row 3:
				    movlw		 3



144	 Microcontrollers: Fundamentals and Applications with PIC

				    movwf		 ROW
				    bcf		  PORTB, 3			  ; Set row 3 to 0 (RB3).
				    nop
				    movf		  PORTB, W			  ; Read all columns simultaneously
				    call		  IDENTIFY			  ; If a key is pressed, identify  
												            ; column
												            ; for key.
				    btfsc		 STATUS, C		  ; Pressed key? C = 1?
				    goto		  KEY50				   ; Yes – Found pressed key. Finish  
												            ; exploration
				    bsf		  PORTB, 3			  ; No – Set explored row to 1 and  
												            ; move to next.
				    Nop							       ; If arriving here withoutfinding a  
												            ; pressed key
												            ; means false key pressed. Wait for  
												            ; new key pressed
				    goto		  KEY20				   ; Go to wait for a key beingpressed.
		  KEY50:								        ; Found a pressed key. Build 
												            ; exploration code with
												            ; 4 bits: ROW: COLUMN.
				    rlf		  ROW, f			   ; Row number in
				    rlf		  ROW, W			   ; bits 2 and 3
				    andlw 		 0FCh				    ; in W register.
				    iorwf		 COLUMN, W		  ; Column number in bits 0 and 1 in W.
				    andlw		 0Fh				    ; Set high part of W to 0.
				    return						      ; Return exploration code in W<3:0>.
		  ; IDENTIFY: Subroutine to identify the column with the pressed key.
		  ; Inputs: In W, reading of port B
		  ; Outputs: Bit C in STATUS set to 1 if there is a pressed key.
		  ;		  Otherwise, C set to 0.
		  ;		  Number of column for pressed key stored in
		  ;		  register named COLUMN.
		  ;
		  IDENTIFY:
				    movwf		 TEMP				    ; Input information stored in  
												            ; register TEMP.
				    btfsc		 TEMP, 4			   ; Is bit of column 0 equal to 0?
				    goto		  COL1				    ; No – Move to examine next column.
				    movlw		 0					     ; Yes – There is a pressed key in  
												            ; that column.
				    movwf		 COLUMN			   ; Store number of column in register  
												            ; COLUMN.
				    goto		  IDENT_FIN		  ; Finish subroutine.
		  COL1:
				    btfsc		 TEMP, 5			   ; Is bit of column 1 equal to 0?
				    goto		  COL2				    ; No – Move to examine next column.
				    movlw		 1					     ; Yes – There is a pressed key in  
												            ; that column.
				    movwf		 COLUMN			   ; Store number of column in register  
												            ; COLUMN.
				    goto		  IDENT_FIN		  ; Finish subroutine.
		  COL2:
				    btfsc		 TEMP, 6			   ; Is bit of column 2 equal to 0?
				    goto		  COL3				    ; No – Move to examine next column.
				    movlw		 2					     ; Yes – There is a pressed key in  
												            ; that column.
				    movwf		 COLUMN			   ; Store number of column in register  
												            ; COLUMN.
				    goto		  IDENT_FIN		  ; Finish subroutine.
		  COL3:	
				    btfsc		 TEMP, 7			   ; Is bit of column 3 equal to 0?



Parallel Input and Output	 145

				    goto		  COL4				    ; No – Move to examine next column.
				    movlw	3						      ; Yes – There is a pressed key in  
												            ; that column.
				    movwf		 COLUMN			   ; Store number of column in register  
												            ; COLUMN.
				    goto		  IDENT_FIN		  ; Finish subroutine.
		  COL4:	
				    bcf		  STATUS, C		  ; Indicates key not pressed with  
												            ; C = 0.
				    return						      ; Return.
		  IDENT_FIN:
				    bsf		  STATUS, C		  ; Indicates key pressed with C = 1.
				    return						      ; Return.
		  ; DELAY20: Subroutine to introduce a 20 ms delay.
		  DELAY20
				    ;
				    ; �Write here code for the subroutine that introduces a 20 

ms delay
				    ;
				    return
				    end

5.3.3  Seven-Segment LEDs

Seven-segment LEDs are mainly used to represent numeric information. 
Figure 5.14 shows their internal circuitry as well as its symbols. Seven-
segment LED displays can be configured as common anode or as com-
mon cathode. In common anode connection, in order for a segment to 
light up, its connection pin must be driven with a low voltage (logic value 
0 for positive logic), with the common anode being set to a high positive 
voltage (VDD). In common cathode connections this situation is reversed: 

Common
anode

a
b
c
d
e
f
g

dp

Common
cathode

Common anode

Common cathode
(b)(a)

a

g

d

f

e

b

c

dp

Segments

a
b
c
d
e
f
g

dp

Figure 5.14 
Seven-segment displays consist of a set of LEDs connected with a common anode or a com-
mon cathode. (a) The internal circuitry. (b) The seven-segment display symbol.



146	 Microcontrollers: Fundamentals and Applications with PIC

each segment is activated by a high voltage that corresponds to the logic 
level 1 while the common cathode must be set to 0 V (VSS).

When using several seven-segment units making a display, their con-
nections to the microcontroller parallel ports should be multiplexed. 
Figure  5.15 shows a connection schematic for several common anode 
seven-segment displays. All the similar segments have been connected to 
one another and to the pins in port B through current limiting resistors 
RS. Each segment becomes active when its pin in the microcontroller has 
a logic value of 0. The common anode for each device acts as a selection 
line that is controlled from port A. Each seven-segment display is acti-
vated sequentially using an appropriate refresh frequency. In sync with 

D

VDD

RA0

RA1

RA2

RA3

RA0

RA1

RA2

RA3

RB0

PIC

RB1

RB2

RB3

RB4

RB5

RB6
RB7

D

D

D

a

T T

(a)

(b)

T T

dp

Rb

Rb

Rb

Rb

Rs

Rs

Rs

Rs

Rs

Rs

Rs

Rs

Figure 5.15 
(a) Circuit for four common anode seven-segment displays connected to ports A and 
B in a PIC microcontroller. Resistors Rs limit the current through the segments, and 
resistors Rb ensure the saturations of the transistors used to enable each device. The 
diodes ensure transistors will be OFF when the pins in port A are at the logic level 1. 
(b) Waveforms at each selection pin. The frequency of these signals must range between 
40 Hz and 200 Hz for the human eye not to detect blinking. Each device is selected one-
fourth of the total time.



Parallel Input and Output	 147

its activation, the information corresponding to the selected device is set 
in each pin. Using a high enough refreshing frequency (between 40 and 
200 Hz), a person will see all the seven-segment displays lighted at the 
same time.

In a multiplexed display, each digit is ON for only a fraction of the total 
time (for example, one-fourth of the total time in the example shown in 
Figure 5.15). Therefore, it is necessary to increase the current in each seg-
ment in approximately the same proportion (×4) to achieve a good lumi-
nance level. If, for example, the forward current for a specific LED is 10 
mA, it will be necessary to drive it with 40 mA pulses when working 
multiplexed. This current value can be adjusted with the resistance Rs. 
Resistance Rb must guarantee that the transistors will saturate. The diodes 
placed in the transistor bases ensure that these will be OFF when not 
directly driven.

It is possible to use an interrupt to handle the circuit in Figure 5.15. 
Figure  5.16 shows the block diagram for the algorithm to service the 
interrupt in that circuit. When multiplexing four devices it is necessary 
to use an oscillator with a frequency four times higher than the desired 
refreshing frequency to generate the interrupt signals to the microcon-
troller. Each interrupt is used to visualize one display. It is possible to use 
four registers in the data memory to store the “image” for the informa-
tion that needs to be displayed. This is reflected in Table 1 in Figure 5.16. 
Each position in this table stores the seven-segment code for the desired 
display. Four additional registers (Table  2) can store the control infor-
mation needed to select the appropriate devices. These are the words 
that will be sent to port A to correctly select the displays sequentially. 
Finally, one last register can be used to store a digit pointer that must 
be refreshed by the interrupt attention program. During each interrupt, 

Table 1 (RAM)
User program writes here

the information to be
displayed.

Table 2 (ROM)
Contains the information to
select the required digits in

the display.

Pointer to
digit to be
refreshed

Interrupt attention program sends to the ports the
information addressed by the pointer.

Figure 5.16 
Software algorithm for the seven-segment display circuit shown in Figure 5.15.



148	 Microcontrollers: Fundamentals and Applications with PIC

this pointer is increased and the information stored in Tables 1 and 2 is 
sent to ports A and B.

With this approach, Table 1 can be considered as the RAM image of the 
display. Each piece of information that has to be displayed must be first 
written in this table. Before doing this it is necessary to convert the origi-
nal information that can be in BCD (binary-coded decimal), ASCII, or a 
nonstandard code into the seven-digit code used by the displays.

5.3.4  Alphanumeric Liquid-Crystal Displays

Liquid-crystal displays (LCDs) are widely used to represent alphanumeric 
information. Most of them consist of the LCD screen itself and a micro-
controller used to control the information that the screen displays through 
an easy-to-use hardware and software interface. These screens normally 
have one or two lines, each one able to display a certain number of char-
acters. A very commonly used device is HD44780 from Renesas (formerly 
Hitachi). This microcontroller can directly handle an LCD screen of one or 
two lines, each containing eight characters. To handle larger screens, it is 
necessary to use auxiliary circuits such as the HD44100 driver that allows 
handling of an additional eight characters for each line. Figure 5.17 shows 
the block diagram for the LCD LM016L that uses a HD44780 controller 
and a HD44100 driver. This module controls an LCD of two lines with 16 
characters per line.

The HD44780 microcontroller has an internal data memory (DDRAM) 
that can store the ASCII codes for up to 80 alphanumeric characters. These 
characters can be displayed in one or two lines. Each line operates like a 
circular memory, that is, once one line is full the next character is written 
in the initial memory position. If the circular RAM is organized in a single 

RS
R/W#

E
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

GND

VDD

HD44780
controller

Driver
HD44100

LCD Display

Module ML016L

Figure 5.17 
Components for LCD module ML016L with an 8-bit interface.



Parallel Input and Output	 149

line, it operates as an 80-byte circular memory with addresses that are 
sequential from 00h to 4Fh. If it is organized in two lines, it has two inde-
pendent circular memories, each one of them able to store 40 characters. 
In this case, the memory addresses are not sequential; the addresses for 
the first line are from 00h to 27h and the addresses for the second line are 
from 40h to 67h, as shown in Figure 5.18.

The HD44780 also has a character generator in ROM and another one 
in RAM. The ROM generator stores the matrix of dots needed to generate 
each character. The RAM generator (CGRAM) allows the user to define 
nonstandard characters that are not stored in the ROM character generator. 
This microcontroller also has an instruction set to manipulate the display.

The main specifications for LCDs that use the HD44780 controller are:

Ability to connect to 4-bit or 8-bit parallel ports•	

Possibility to store up to 80 characters in an 80-byte internal •	
RAM (DRAM)

Character generator in internal ROM with:•	

160 characters with 5 × 7 dots•	

32 characters with 5 × 10 dots•	

User-defined character generator in internal RAM with:•	

8 characters with 5 × 7 dots•	

4 characters with 5 × 10 dots•	

CMOS technology, yielding very low power consumption and •	
therefore able to be battery powered

Internal power-on RESET circuit•	

Large instruction set: clear display, cursor and character blinking, •	
movement of cursor and display, on/off control for cursor and 
display, etc.

00h

40h
Visible area

0Fh

4Fh

27h

67h

Figure 5.18 
The data RAM memory (DDRAM) for the HD44780 controller can be organized as one 
or two lines. When organized as two lines (as shown in this figure), each line acts like a 
40-byte circular memory with the addresses shown. The noncontinuous line shows the part 
of DDRAM visible in the LM016L module (two lines with 16 characters per line). The visible 
part can be moved along the DDRAM using the appropriate orders shown in Table 5.6.



150	 Microcontrollers: Fundamentals and Applications with PIC

These LCD modules have a digital interface for the transfer of data and 
control signals between the module and the microcontroller or micropro-
cessor. This interface consists of three control lines and four or eight data 
lines, depending on whether the interface is 4 or 8 bits.

The connection between a medium-end PIC microcontroller and a LCD 
module can be done by using ports A and B. Figure 5.19 shows the connec-
tion between these modules using an 8-bit interface. The lines and signals 
involved in this connection are described in the following list.

Register select (RS). This signal tells the LCD module whether the •	
signal being sent through DB0-DB7 is a control signal (RS = 0) or 
a data signal (RS = 1).

Read/write (R/W). This signal indicates reading (RW = 1) or writ-•	
ing (RW = 0).

Enable (E). E = 1 enables the device. The LCD module captures •	
data or control signals with the falling edge of E.

Data bus (DB0-DB7). Bidirectional lines that transmit data and •	
control signals.

Figure 5.20 illustrates the process of sending a control or a data signal to 
the LCD module. Table 5.6 shows the order set accepted by LCD modules 
that use the HD44780 controller.

The HD44780 controller has an internal register called the address 
counter (AC). This register contains the address of DDRAM or CGRAM 
that will be used to write or read data. Once one type of memory has been 
selected, data will be read or written from that memory until the selection 
is changed.

The control instructions “Clear display” and “Move to initial position” select 
the DDRAM and set the AC to 0. The instruction “Select DDRAM” allows for 
setting the AC to any value. When data is written (or read) the AC register is 
incremented or decremented depending on the input mode selected.

RS
LCD Display

Module ML016LPIC

R/W#
E
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

RB0
RB1
RB2

RA0
RA1
RA2

RB3
RB4
RB5
RB6
RB7

Figure 5.19 
LCD module connected to a PIC microcontroller using ports A and B.



Parallel Input and Output	 151

In general, the execution of orders for the display of data takes a rela-
tively long time, on the order of several microseconds. During this time 
the controller cannot receive a new order or data. For this reason, before 
sending new data or orders it is necessary to find out if the controller can 
receive them. The busy flag (BF) bit is used for this reason; BF = 1 when the 
controller is busy and BF = 0 when the controller is ready to accept new 
data or new orders. This bit can be read at any time by reading (R/W# = 1) 
an order (RS = 0). Bit 7 in the returned word (DB0 to DB7) from the con-
troller is the BF indicator. Example 5.6 illustrates this process.

Example 5.6

This example shows the assembler code for some basic routines to operate an 
LCD that incorporates the HD44780 controller. In this example the LCD mod-
ule is connected to the PIC microcontroller through ports A and B as shown 
in figure 5.19

This example has four routines: INIT_LCD for the display initialization, WR_
CMD and WR_DATA to write orders and data in the display, and LCD_BUSY 
to use the BF bit to check if the controller is busy before sending a new order 
or data.

		  list			   p = 16f873
		  #include	<p16f873.inc>
	 ; Hardware description:
	 P_DATA	 equ	 PORTB			  ; Port for display data lines.
	 P_TRIS	 equ	 TRISB	
	 P_CTRL	 equ	 PORTA			  ; Port for display control lines.
	 RS			  equ	 0				    ; Control bit for signal RS.
	 RW			  equ	 1				    ; Control bit for signal RW.
	 E			   equ	 2				    ; Control bit for signal E.
	 ; Other Declarations:
	 TEMP		  equ	 0x020			  ; Temporary register used by subroutines.
	 ; INIT_LCD: Display initialization subroutine.
	 INIT_LCD:
										          ; BF flag not ready yet.
				    clrf	 P_CTRL		  ; Control line to 0.

DB0-DB7

R/W#

(8)

>450 ns

RS

E

Figure 5.20 
Signals used to write data or orders in the LCD module. Order writing (RS = 0) or data writ-
ing (RS = 1) becomes effective in sync with the falling edge of the signal E.



152	 Microcontrollers: Fundamentals and Applications with PIC

Tabl


e
 5

.6

O
rd

er
s 

A
cc

ep
te

d
 b

y 
H

D
44

78
0

In
st

ru
ct

io
n

R
S

R
/W

D
B

7
D

B
6

D
B

5
D

B
4

D
B

3
D

B
2

D
B

1
D

B
0

D
es

cr
ip

ti
on

C
le

ar
 

d
is

pl
ay

0
0

0
0

0
0

0
0

0
1

St
or

es
 2

0h
 (A

SC
II

 c
od

e 
fo

r 
sp

ac
e 

ch
ar

ac
te

r)
 in

 D
D

R
A

M
, s

el
ec

ts
 

it
 a

nd
 s

et
s 

A
C

 to
 0

.

M
ov

e 
to

 
in

it
ia

l 
po

si
ti

on

0
0

0
0

0
0

0
0

1
X

Se
le

ct
s 

D
D

R
A

M
 a

nd
 s

et
s 

A
C

 to
 0

. M
ov

es
 d

is
pl

ay
 to

 th
is

 in
it

ia
l 

po
si

ti
on

. C
on

te
nt

 in
 D

D
R

A
M

 is
 n

ot
 m

od
ifi

ed
.

Se
le

ct
 in

pu
t 

m
od

e
0

0
0

0
0

0
0

1
I/

D
S

Se
le

ct
s 

m
ov

em
en

t d
ir

ec
ti

on
 fo

r 
cu

rs
or

 (I
/

D
). 

A
ls

o 
se

le
ct

s 
w

he
th

er
 th

e 
d

is
pl

ay
 m

ov
es

 o
r 

no
t (

S)
. T

he
se

 o
pe

ra
ti

on
s 

ca
n 

be
 

d
on

e 
d

ur
in

g 
d

at
a 

re
ad

in
g 

or
 w

ri
ti

ng
.

C
on

tr
ol

 
d

is
pl

ay
0

0
0

0
0

0
1

D
C

B
Tu

rn
s 

d
is

pl
ay

 (D
) a

nd
 c

ur
so

r 
(C

) o
n 

or
 o

ff
. A

ct
iv

at
es

 c
ur

so
r 

bl
in

ki
ng

 (B
).

M
ov

e 
d

is
pl

ay
 o

r 
cu

rs
or

0
0

0
0

0
1

S/
C

R
/

L
X

X
M

ov
es

 d
is

pl
ay

 o
r 

cu
rs

or
 (S

/
C

) i
n 

on
e 

d
ir

ec
ti

on
 (R

/
L

).

Se
le

ct
 

fu
nc

ti
on

0
0

0
0

1
D

L
N

F
X

X
Se

le
ct

s 
si

ze
 (4

 o
r 

8)
 fo

r 
d

at
a 

bu
s 

(D
L

), 
th

e 
nu

m
be

r 
of

 d
is

pl
ay

 
lin

es
 (N

), 
an

d
 c

ha
ra

ct
er

 fo
rm

at
 (F

).

Se
le

ct
 

C
G

R
A

M
0

0
0

1
C

G
R

A
M

 a
d

d
re

ss
 th

at
 w

ill
 b

e 
st

or
ed

 in
 

A
C

St
or

es
 a

 C
G

R
A

M
 a

d
d

re
ss

 in
 A

C
. A

ft
er

 th
is

 o
rd

er
, r

ea
d

 o
r 

w
ri

tt
en

 d
at

a 
co

m
e 

or
 g

o 
to

 C
G

R
A

M
.

Se
le

ct
 

D
D

R
A

M
0

0
1

D
D

R
A

M
 a

d
d

re
ss

 th
at

 w
ill

 b
e 

st
or

ed
 in

 A
C

St
or

es
 a

 D
D

R
A

M
 a

d
d

re
ss

 in
 A

C
. A

ft
er

 th
is

 o
rd

er
, r

ea
d

 o
r 

w
ri

tt
en

 d
at

a 
co

m
e 

or
 g

o 
to

 D
D

R
A

M
.

R
ea

d
 B

F 
an

d
 A

C
0

1
B

F
A

C
 c

on
te

nt
R

ea
d

s 
th

e 
st

at
us

 o
f b

us
y 

fl
ag

 B
F 

an
d

 th
e 

co
nt

en
t o

f A
C

.

W
ri

te
 d

at
a

1
0

D
at

a 
to

 w
ri

te
W

ri
te

s 
d

at
a 

in
 th

e 
ad

d
re

ss
 p

oi
nt

ed
 b

y 
A

C
. D

at
a 

is
 w

ri
tt

en
 in

 
D

D
R

A
M

 o
r 

C
G

R
A

M
 d

ep
en

d
in

g 
on

 th
e 

la
st

 s
el

ec
ti

on
.

R
ea

d
 d

at
a

1
1

R
ea

d
 d

at
a

R
ea

d
s 

d
at

a 
fr

om
 th

e 
ad

d
re

ss
 p

oi
nt

ed
 b

y 
A

C
. D

at
a 

is
 r

ea
d

 fr
om

 
D

D
R

A
M

 o
r 

C
G

R
A

M
 d

ep
en

d
in

g 
on

 th
e 

la
st

 s
el

ec
ti

on
.



Parallel Input and Output	 153

N
ot

e:
 	

I/
D

—
1:

 in
cr

em
en

t, 
0:

 d
ec

re
m

en
t; 

S—
1:

 a
ut

om
at

ic
 d

is
pl

ac
em

en
t 

of
 d

is
pl

ay
; S

/
C

—
1:

 d
is

pl
ay

 d
is

pl
ac

em
en

t, 
0:

 c
ur

so
r 

m
ov

em
en

t; 
R

/
L

—
1:

 r
ig

ht
 

d
is

pl
ac

em
en

t, 
0:

 le
ft

 d
is

pl
ac

em
en

t; 
D

L
—

1:
 8

-b
it

 in
te

rf
ac

e,
 0

: 4
-b

it
 in

te
rf

ac
e;

 N
—

1:
 2

-l
in

es
 d

is
pl

ay
, 0

: 1
-l

in
e 

d
is

pl
ay

; F
—

1:
 5

 ×
 1

0 
d

ot
s 

ch
ar

ac
te

rs
, 

0:
 5

 ×
 7

 d
ot

s 
ch

ar
ac

te
rs

; B
F—

B
us

y 
fl

ag
, 1

: d
is

pl
ay

 b
us

y,
 0

: d
is

pl
ay

 c
an

 a
cc

ep
t o

rd
er

s 
or

 d
at

a;
 D

D
R

A
M

, d
at

a 
R

A
M

 m
em

or
y;

 C
G

R
A

M
, c

ha
ra

ct
er

 
ge

ne
ra

to
r 

R
A

M
 m

em
or

y;
 A

C
, a

d
d

re
ss

 c
ou

nt
er

.



154	 Microcontrollers: Fundamentals and Applications with PIC

				    call	 DELAY15		  ; Wait 15 ms.
				     ; BF flag ready from here.
				    movlw	38h			   ; 2-lines display. 5 × 7 characters.
				    call	 WR_CMD
				    movlw	08h			   ; Turn off display and cursor.
				    call	 WR_CMD
				    movlw	01h			   ; Clear display and set AC = 0.
				    call	 WR_CMD
				    movlw	0Ch				   ; Turn on display with cursor off.
				    call	 WR_CMD
				    movlw	06h			   ; Select input mode: Cursor moves towards  
										          ; right.
				    call	 WR_CMD
				    return
	 ; WR_CMD: Subroutine to write an order in the display.
	 ;			   Input: Order must be stored in W.
	 WR_CMD:
				    movwf	TEMP			   ; Store order in TEMP.
				    call	 LCD_BUSY		 ; Wait for display ready.
				    bcf	 P_CTRL, RW	; Prepare writing (RW = 0)
				    bcf	 P_CTRL, RS	; an order (RS = 0).
				    bsf	 P_CTRL, E	 ; Enable display (E = 1).
				    movf	 TEMP, W		  ; Store order W.
				    movwf	P_DATA		  ; Send order to display.
				    bcf	 P_CTRL, E	 ; Disable display (E = 0).
				    return
	 ;WR_DATA:Subroutine to write data in the display.
	 ;	  		  Input: Order must be stored in W.
	 WR_DATA:
				    movwf	TEMP			   ; Store order in TEMP.
				    call	 LCD_BUSY		 ; Wait for display ready.
				    bcf	 P_CTRL, RW	; Prepare writing (RW = 0)
				    bsf	 P_CTRL, RS	; data (RS = 1).
				    bsf	 P_CTRL, E	 ; Enable display (E = 1).
				    movf	 TEMP, W		  ; Store data in W.
				    movwf	P_DATA		  ; Send data to display.
				    bcf	 P_CTRL, E	 ; Disable display (E = 0).
				    return
	 ;LCD_BUSY: Subroutine for waiting if display is busy.
	 ;			   This subroutine checks bit BF. Wait while BF = 1
	 ;	  		  and returns when BF = 0.
	 LCD_BUSY:
				    bsf	 STATUS,RP0	; Select register bank 1.
				    movlw	0FFh			   ; Store data port in input
				    movwf	P_TRIS		  ; by writing FFh in the appropriate TRIS  
										          ; register
				    bcf	 STATUS, RP0	; Select bank 0.
				    bsf	 P_CTRL, RW	; Prepare reading (RW = 1).
				    bcf	 P_CTRL, RS	; of an order (RS = 0).
	 BUSY10:
				    bsf	 P_CTRL, E	 ; Enable display (E = 1).
				    nop
				    movf	 P_DATA, W	 ; Read display. BF is bit 7.
				    bcf	 P_CTRL, E	 ; Disable display (E = 0).
				    andlw	80h			   ; Retrieve BF bit.
				    btfss	STATUS, Z	 ; Is BF 0?
				    goto	 BUSY10		  ; No - display busy. Check again.
				    bcf	 P_CTRL, RW	; Yes - display not busy. End of reading  
										          ; (RW = 1).
				    bsf	 STATUS, RP0	; Select bank 1.
				    movlw	0				    ; Store data port in output.



Parallel Input and Output	 155

				    movwf	P_TRIS		  ; by writing 00h in the  
										          ; appropriate TRIS register.
				    bcf	 STATUS, RP0	; Select bank 0.
				    return				    ; Return.
	 ; DELAY15: Subroutine for 15 ms delay.
	 DELAY15:
		  ;
		  ; Write here code for this subroutine.
		  ;
		  return
		  end





157

6
Timers

Many microcontroller applications, such as generating signals, measuring 
the duration of a signal, and keeping date and time, use time as their vari-
able. For this reason, microcontrollers need to have internal resources to 
accurately measure time. Each PIC microcontroller has at least one basic 
timer module called Timer0, although the majority of medium-end PICs 
can have two additional timers: Timer1 and Timer2. In addition, some 
PICs have capture/compare/PWM (CCP) modules that increase the pos-
sibilities of the basic timers. This chapter describes the structure, function, 
and programming of each one of these modules, illustrated with examples 
of how they work and how they are programmed.

6.1  Timers in PIC Microcontrollers

Each one of the timers in a medium-end PIC microcontroller is based on 
an 8-bit or 16-bit incrementing synchronous counter. These counters can 
be programmed to count internal or external pulses. The count number 
stored by each counter can be read or modified by accessing the special 
function registers associated with that timer. Some of the bits in these 
registers are used to notify of counter overflow, being able to generate an 
interrupt request to the microcontroller.

Timers can also have an auxiliary asynchronous counter. This auxil-
iary counter can be configured as a prescaler (when placed in the signal 
path before the main counter) or as a postscaler (after the main counter). 
Timer0 and Timer1 only have prescalers, whereas Timer2 has a prescaler 
and a postscaler. Figure 6.1 shows the general schematic for the modules 
Timer0, Timer1, and Timer2. The main specifications of these timers are 
shown in table 6.1 and are described next in further detail.

6.1.1  Timer0 Module

Timer0 consists of a prescaler and an 8-bit incrementing synchronous 
counter that can be read or written using the special function register 
TMR0 as shown in Figure  6.2. The prescaler is an asynchronous coun-



158	 Microcontrollers: Fundamentals and Applications with PIC

ter with a programmable division factor. The count of this prescaler is 
invisible to the programmer.

Timer0 can be configured to count machine cycles or to count exter-
nal pulses. When counting machine cycles it is said to operate as a timer. 
When counting external pulses, it is said that it operates as a counter. The 
external pulses are connected to the T0CKI pin. When the pulses reach 
the synchronization block, they are sampled twice during each machine 
cycle. This results in a new signal whose edges are in phase with the 

Table 6.1

Main Specifications for Timers in Medium-End PIC Microcontrollers

Timer Size
Prescaler 
Division

Postscaler 
Division

SFR for 
Count 

Number Overflow

Timer0 8 bits 2, 4, …, 256 NO TMR0 bit T0IF in OPTION

Timer1 16 bits 1, 2, 4, 8 NO TMR1H, 
TMR1L

bit TMR1IF in PIR1

Timer2 8 bits 1, 4, 8 1, 2, …, 16 TMR2 bit TMR2IF in PIR2

T0CKI
Fosc/4

T0SE T0CS PS2:PS0 PSA

Prescaler
2, 4, 8, ..., 256

T0IF
TMR0Sync

1
MUX

0
0

MUX
1

Figure 6.2 
Block diagram for Timer0. Timer0 can count machine cycles (timer mode, T0CS  =  0) or 
external pulses (counter mode, T0CS = 1). TMR0 is an 8-bit incrementing counter. When 
TMR0 overflows, it activates the flag T0IF in the INTCON register. Before reaching TMR0, 
the pulses are synchronized with the microcontroller’s clock. They might be affected by a 
programmable prescaler.

In pulses Prescaler Main counter Postscaler
Overflow

Figure 6.1 
General block diagram for medium-end PIC timers. All of them have an 8-bit or 16-bit 
incrementing main counter and a prescaler. Timer2 also has a postscaler. The pulses to be 
counted can be internal or external. Overflow is reported in a bit from the special function 
registers. This bit can generate an interrupt request to the PIC.



Timers	 159

microcontroller’s clock. This synchronized signal is used to drive the 
counter TMR0. In order to not lose pulses during the synchronization, it 
is necessary for the pulses that enter the block to remain at 1 or 0 at least 
half of the duration of the machine cycle. When Timer0 works in coun-
ter mode, the synchronization block determines the minimum value of 
the period for the pulses that enter through the T0CKI pin. If TOSC is the 
period for the main oscillator in the microcontroller and P is the prescaler 
factor, the period Ti of the pulses entering through the T0CKI must meet 
the following condition:

	
Ti T

P
>
×4 OSC ,	 (6.1)

where P = 1 when the prescaler is not used and P = 2, 4, …, 256 when it is.
In low-power mode (sleep), the main oscillator stops working, resulting 

in Timer0 not working when the microcontroller is sleeping.
There are three special function registers associated with Timer0: 

TMR0, OPTION, and INTCON. Figure 6.3 shows the names of the bits in 
the OPTION and INTCON registers. The TMR0 register stores the value 
for the counter in Timer0. This value can be read or written at any time 
from the program executed by the microcontroller. When a value is writ-
ten in TMR0, the count for the prescaler —if the prescaler is assigned 
to the timer—is set to 0. Also, writing in the TMR0 register inhibits the 
counting in Timer0 during two machine cycles.

When Timer0 overflows, the flag T0IF (bit INTCON<2>) is set to 1. If 
Timer0 is serviced using programmed I/O, this bit must be checked to 
learn if Timer0 did overflow. Once the overflow is verified, this flag can 
be reset by software. The interrupt to Timer0 can be enabled by setting bit 

OPTION

INTCON 

7 6 5 4 3 2 1 0 

7 6 5 4 3 2 1 0 

RBPU# 

GIE RBIIF PEIE 

INTEDG T0CS 

T0IE T0IF INTE INTF RBIE 

T0SE PSA PS2 PS1 PS0 

Figure 6.3 
Special function registers OPTION and INTCON. OPTION stores the configuration bits for 
Timer0: T0CS configures Timer0 as a timer or counter; T0SE configures the external signal 
edge that will increment Timer0 when working as a counter; PSA assigns the prescaler to 
Timer0 or the watchdog; and PS2, PS1, and PS0 program the division factor for the pres-
caler. INTCON stores the Timer0 overflow flag, T0IF. Bit T0IE enables the interrupt request 
to the microcontroller as a result of Timer0 overflow.



160	 Microcontrollers: Fundamentals and Applications with PIC

T0IE (INTCON<5>) to 1. If this interrupt is enabled, Timer0 generates an 
interrupt request when it overflows.

The control bits for Timer0 are in the OPTION register. Bit T0CS selects the 
source for the clock pulses. When selecting an external clock source at the 
T0CKI pin, bit T0SE selects if the counter increments with the raising edges 
(T0SE = 0) or with the falling edges (T0SE = 1) of the pulses in T0CKI.

As shown in Figure 6.4, Timer0 and the watchdog timer (WDT) share 
the prescaler. This prescaler is an 8-bit asynchronous counter that can be 
assigned to Timer0 or to the WDT. When assigned to one module, the 
other module cannot use it. The prescaler is assigned to Timer0 by setting 
the bit PSA (OPTION<3>) to 1. If the bit PSA is set to 0, the prescaler is 
assigned to the WDT. Bits PS2, PS1, and PS0 in the OPTION register select 
the division factor for the prescaler.

The division factor (P) for the prescaler assigned to Timer0 can have the 
following values:

	 P = 2, 4,…, 2n+1,…, 256,	 (6.2)

with n = 0, 1, …, 7 being the value stored in bits PS2:PS0.
When the prescaler is assigned to the WDT, the division factor is P = 1, 

2, 4, …, 2n, 2n+1, …, 128, as shown in table 2.1.
The overflow time for Timer0 can be calculated as follows. Let N be the 

number of pulses that need to reach Timer0 to overflow it, P the prescaler 
division factor, and Ti the period of the pulses at the input of the prescaler. 
If Timer0 works as a timer, then Ti is the duration of a machine cycle; if it 

T0CKI
Fosc/4

T0SE T0CS

PS2:PS0

PSA

PSA
PSA

WDTE

Prescaler

WDT overflow
WDT

TMR0
T0IF

Sync0
MUX

1

1
MUX

0

1
MUX

0

0
MUX

1

Figure 6.4 
The prescaler can be assigned to Timer0 or to the watchdog timer (WDT). PSA = 0 assigns it 
to Timer0 and PSA = 1 assigns it to WDT. When Timer0 overflows (moves from FFh to 00), 
the bit T0IF in the register INTCON becomes active. T0SE, T0CS, PSA, and PS2:PS0 are bits 
for the OPTION register. WDTE is one of the PIC configuration bits that enables the WDT.



Timers	 161

operates as a counter, Ti is the period of the external pulses. The overflow 
time (To) can be found as

	 To = P × N × Ti.	 (6.3)

Note that the value stored in the TMR0 register is not N but its 2-comple-
ment using 8 bits, which is the value that N needs to reach 256. Therefore, 
the value that must be loaded in TMR0 is

	 NTMR0 = 256 – N.	 (6.4)

If Timer0 works as a timer (counting machine cycles) it is necessary to 
keep in mind that the counting is inhibited during two machine cycles 
after writing data in the TMR0 register. Therefore, the value that needs to 
be loaded in the TMR0 is

	 NTMR0 = 256 – N + 2.	 (6.5)

Finally, it is important to realize that if the value NTMR0 is loaded in the 
TMR0 register each time there is an overflow, then Timer0 works as a 
N-module counter or timer.

Example 6.1

Use of Timer0 to program delays. To carry out this task, Timer0 operates as a 
timer because its clock pulses come from the main oscillator. If fosc is the fre-
quency of the main oscillator, the frequency of the pulses reaching the timer 
is fosc/4. The following program illustrates how to initialize the operation of 
Timer0 (subroutine InitTimer0) and how to assign the prescaler to Timer0 with 
a division factor equal to 8. The subroutine Del1ms creates a delay of approxi-
mately 1 ms. The subroutine DelNms creates a delay of N ms with N being less 
than or equal to 255.

		  ; Using Timer0 and prescaler to program delays.
		  ;
		  ; Hardware:
		  ; Oscillator frequency for PIC: 4 MHz, therefore, a machine  
		  ; cycle (MC) lasts Tmc = 1 µs.
		  ;
		  ; Values to store in prescaler and TMR0 for a 1 ms delay:
		  ; 1 ms = 1000 µs, but 1000 = 8 × 125, therefore store in  
		  ; prescaler
		  ; P = 8 and in TMR0 the 2-complement of 125 plus 2.
		  ; That is, TMR0 = 256 - 125 + 2 = 133.
				    List			   p = 16F873
				    include	 “P16F873.INC”

		  AUX	 equ			   0x20					     ; Auxiliary variable
		  ; �InitTimer0: Subroutine to program Timer0 as timer with a 

prescaler of 8.



162	 Microcontrollers: Fundamentals and Applications with PIC

		  ;
		  InitTimer0:
				    bcf			   INTCON, T0IE		  ; Disable Timer0 interrupt.
				    bsf			   STATUS, RP0			  ; Select data memory bank 1
				    movlw			  0xC2					     ; and configure Timer0 as a  
														              ; timer
				    movwf			  OPTION_REG			   ; with prescaler factor of 8.
				    bcf			   STATUS, RP0			  ; Select data memory bank 0.
				    clrf			   TMR0					     ; Store 0 in TMR0.
				    bcf			   INTCON, T0IF		  ; Set overflow flag to 0.
		  ;		  bsf			   INTCON, T0IE		  ; It is possible to enable  
														              ; here Timer0 interrupt
														              ; if necessary.
				    return
		  ; Del1ms: Subroutine for a 1 ms delay
		  ;		   Inputs: none.
		  ;		   Outputs: none.
		  Del1ms:
				    movlw			  .133					     ; 125 in 2-complement plus 2,
				    movwf			  TMR0					     ; stored in TMR0.
		  Del1ms_01:
				    btfss			  INTCON, T0IF		  ; T0IF = 1?
				    goto			   Del1ms_01			   ; No - wait.
				    bcf			   INTCON, T0IF		  ; Yes - set T0IF = 0 and
				    return								        ; return because 1 ms has  
														              ; elapsed.
		  ; �DelNms: Subroutine to create a delay of N milliseconds (N 

< = 255).
		  ;		   This subroutine calls N times subroutine Del1ms.
		  ;		   Inputs: N in W.
		  ;		   Outputs: none.
		  DelNms:
				    movwf	AUX								       ; Store the delay (ms) in AUX.
		  DelNms_01:									        ; Call Del1ms N times.
				    call			   Del1ms				    ; Wait 1 ms.
				    decfsz		  AUX, f				    ; Decrement AUX. AUX = 0?.
				    goto			   DemNms_01			   ; No – continue waiting.
				    return								        ; Yes – return because N ms  
														              ; have already elapsed.
				    end

6.1.2  Timer1 Module

Timer1, whose structure is shown in Figure 6.5, is the second timer mod-
ule available in most medium-end PIC microcontrollers. Timer1 consists 
of a 16-bit incrementing counter with a prescaler with a division factor of 
1, 2, 4, or 8. Timer1 can work as a timer (counting machine cycles) or as a 
counter (counting external pulses). When working as a counter, Timer1 
can be programmed to work in synchronous or asynchronous mode. 
This selection is done by the T1SYNC# bit in the T1CON register. When 
T1SYNC# = 0, Timer1 operates as a synchronous counter because the input 
pulses to TMR1 travel through the synchronization block. This block sam-
ples the input signal and synchronizes it with the microcontroller’s inter-
nal clock. The resulting signal has edges that are in phase with the main 
clock of the PIC. This synchronized signal drives the 16-bit counter TMR1 
that is made by the TMR1L and TMR1H registers.



Timers	 163

To not lose pulses during the process of synchronization, it is necessary 
that all the pulses entering the synchronization block remain at 1 or 0 at 
least half of the duration of a machine cycle. This determines the mini-
mum period of the pulses that enter in Timer1 in this operating mode. The 
working modes synchronized and nonsynchronized apply only to Timer1 
working as a counter, because when it works as a timer it always works 
in synchronized mode. When Timer1 is configured to work as a timer by 
setting TMR1CS = 0, the T1SYNC# bit is ignored.

If TOSC is the period of the main oscillator in the microcontroller and P 
is the division factor for the prescaler (P = 1, 2, 4, 8), the period Ti for the 
pulses in T1CKI must be

	
Ti T

P
>
×4 OSC .	 (6.6)

With Timer1 programmed as an asynchronous counter (T1SYNC# = 1) 
this counter continues working even when the microcontroller is in low-
power consumption mode. This makes Timer1 an excellent candidate 
for a real-time clock (RTC). The count value can be written or read using 
the special function registers TMR1H and TMR1L. When these registers 
are written, the count for the prescaler is reset to 0. The T1CON register 
contains the control bits for Timer1. The source of its clock pulses can be 
internal or external, selected using the TMR1CS bit. The external clock 
can consist of the pulses entering through the T1CKI/T1OSC pin or from 
an external crystal set across pins T1OSO and T1OSI. The T10SCEN bit 
enables the oscillator to use an external crystal. Bit TMR1ON enables the 
counting process.

The value n (n  =  0, 1, 2, 3) for the bits T1CKPS1 and T1CKPS0 in the 
T1CON register sets the division factor P (P = 1, 2, 4, 8 = 2n) for the prescaler 

T1SYNC#T1CKPS1:T1CKPS0

T1OSCEN

TMR1CS

Fosc/4

T1OSI

T1OSCT1OSO/
T1CKI

Reset (from CCP module)

Prescaler
1, 2, 4, 8

TMR1ON
TMR1IF

TMR1

TMR1L TMR1H

Sync

1
MUX

0

0
MUX

1

Figure 6.5 
Timer1 block diagram.



164	 Microcontrollers: Fundamentals and Applications with PIC

in Timer1, as shown in Figure 6.6. For example, if a division factor of 8 is 
desired, these bits will be set to 3. When Timer1 overflows, the TMR1F bit 
is set to 1. TMR1F is a bit in the PIR1 register, and after overflowing it must 
be reset to 0 by software. If the interrupt for Timer1 is enabled (this is done 
by setting bit TMR1E to 1), the overflow generates an interrupt.

It is possible to calculate the time needed for Timer1 to overflow by fol-
lowing the same reasoning as for Timer0. With N being the number of 
pulses needed before the 16-bit counter (TMR1) will overflow, P the divi-
sion factor for the prescaler, and Ti the period for the input pulses, the 
overflow time for Timer1 is

	 To = P × N × Ti.	 (6.7)

The 2-complement for N using 16 bits is loaded in the registers TMR1L 
and TMR1H:

	 NTRM1 = 216 – N = 65536 – N.	 (6.8)

When Timer 1 runs freely, then N = 216. In this case,

	 To = P × 216 × Ti.	 (6.9)

Example 6.2

Timer1 programming. This example illustrates how to program Timer1 as an 
asynchronous counter for external pulses; how to write a 16-bit binary number 
in registers TMR1L and TMR1H; and how to safely read registers TMR1L and 
TMR1H.

					     List			   p = 16F873
					     include	 “P16F873.INC”
		  ;
		  AUX_H	equ		  0x20					     ; Auxiliary variable.
		  AUX_L	equ		  0x21					     ; Auxiliary variable.
		  ;
		  ; �InitTimer1: Routine to program Timer1 as an asynchronous 

counter for external pulses with a prescaler value of 8.
		  InitTimer1:
					     clrf	 T1CON					    ; Timer1 as timer. Prescaler = 1.

T1CON

– – T1CKPS1 T1CKPS0 T1OSCEN T1SYNC# TMR1CS TMR1ON
7 6 5 4 3 2 1 0

Figure 6.6 
T1CON: Timer1 control register.



Timers	 165

					     bsf	 STATUS, RP0			  ; Select bank 1.
					     bcf	 PIE1, TMR1IE		  ; Disable interrupt for Timer1.
					     bcf 	 STATUS, RP0 		  ; Select bank 0.
					     clrf	 TMR1H					    ; Set TMR1H to 0.
					     clrf	 TMR1L					    ; Set TMR1L to 0.
					     bcf	 PIR1, TMR1IF		  ; Overflow flag to 0.
					     movlw	 0x36					    ; Configure Timer1 as asynchronous  
													             ; counter with P = 8.
					     movwf	T1CON 				    ; T1OSC disabled, Timer1 stopped.
					     bsf 	 T1CON, TMR1ON		 ; Start Timer1.
					     return
		  ;
		  ; WR_TMR1a: Routine to write a 16 bit binary number in Timer1.
		  ;					     Temporarily stopping Timer1 count.
		  ;					�     Inputs: AUX_H and AUX_L contain the high and low 

bytes for the number to write in Timer1.
		  ;					     Outputs: none
		  WR_TMR1a:
					     bcf		  T1CON, TMR1ON	; Stop TMR1.
					     movf		  AUX_H, W			  ; Load high byte in
					     movwf		 TMR1H				   ; TMR1H register.
					     movf		  AUX_L, W			  ; Load low byte in
					     movlw		 TMR1L				   ; TMR1L register.
					     bsf		  T1CON, TMR1ON	; Reinitiate counting TMR1.
					     return
		  ;	
		  ; WR_TMR1b: Routine to write a 16 bit binary number in Timer1.
		  ;			   without stopping Timer1 count.
		  ;			   Inputs: AUX_H and AUX_L contain the high and low bytes
		  ;			   for the number to write in Timer1.
		  ;			   Outputs: none
		  ;
		  WR_TMR1b:
					     clrf	 TMR1L					    ; Ensure TMRL1 will not overflow  
													             ; while
					     movf	 AUX_H, W				   ; loading high byte on
					     movwf	TMR1H					    ; register TMR1H.
					     movf	 AUX_L, W				   ; Load low byte in
					     movlw	TMR1L					    ; register TMR1L.
					     return
		  ;
		  ; RD_TMR1: Routine to read value of Timer1 while it is counting.
		  ;					     Inputs: None.
		  ;					     Outputs: In AUX_H return the value of TMR1H and
		  ;					     AUX_L returns the value of TMR1L.
		  ;	
		  RD_TMR1:
					     movf	 TMR1H, W				   ; Read TMR1H and store high byte
					     movwf	AUX_H					    ; in AUX_H.
					     movf	 TMR1L, W				   ; Read low byte in TMR1L and  
													             ; store it
					     movwf	AUX_L					    ; in AUX_L.
					     movf	 TMR1H, W				   ; Read again TMR1H to check if  
													             ; changed.
					     xorwf	AUX_H, W				   ; Compare readings.
					     btfsc	STATUS, Z			   ; Same?
					     goto	 RD_END				    ; Yes – Reading validated. Finish  
													             ; routine.
					     movf	 TMR1H, W				   ; No – Non-valid reading. Read  
													             ; again TMR1H
					     movwf	AUX_H					    ; and TMR1L. These results are  
													             ; valid reading because



166	 Microcontrollers: Fundamentals and Applications with PIC

					     movf	 TMR1L, W			  ; there is no time for TMR1L to  
												            ; overflow and change
					     movwf	AUX_L				   ; the value of TMR1H.
		  RD_END:
					     return					     ; Return with the correct readings.
		  ;
		  end

6.1.3  Timer2 Module

Timer2 is a third module available in some medium-end PIC microcon-
trollers. It consists of an 8-bit incrementing counter, a prescaler, a post-
scaler, and a register to store the count. Timer2 can only work as a timer 
counting machine cycles. Figure 6.7 shows its block diagram.

The prescaler can be programmed with division factors of 1, 4, or 8. 
The values for the postscaler are 1, 2, 3, …, 16. When using both scalers 
with their maximum values, the overflow time for Timer2 is the over-
flow time for a 16-bit counter. Timer2 is the timer that generates the 
time base used by the pulse width modulator when the CCP module 
operates in PWM mode. Timer2 can also be used to generate the clock 
for the SSP module. Timer2 does not increment while the microcon-
troller is in low-power mode. It restarts counting when the microcon-
troller wakes up.

Figure 6.8 shows the bits that make up the control register for Timer2, 
T2CON. Bits T2CKPS1 and T2CKPS0 select the division factor for the pres-
caler, while bits TOUTPS3:TOUTPS0 select the division factor for the post-
scaler. The values for these bits are shown in Table 6.2. Timer2 is enabled 
by setting bit TMR2ON in register T2CON to 1 and is disabled by setting 
this bit to 0.

The count value can be read or written in register TMR2. The chang-
ing value in register TMR2 is continuously compared against the value 
stored in PR2. When these two values are equal, the register TMR2 is set 
to 0 in the next clock cycle and also sends a pulse to the postscaler. With 
P2 being the division factor in the postscaler, Timer2 overflows after P2 

TOUTPS3:TOUTPS0

T2CKPS1:T2CKPS0

2

4

Fosc/4

Comparator

PR2

Prescaler
1, 4, 16

Postscaler
1, 2, ..., 16

To SSP
module

TMR2IF

TMR2 Reset

Figure 6.7 
Timer2 block diagram.



Timers	 167

pulses. When this happens, bit TMR2IF in register PIR1 is set to 1. This bit 
must be reset to 0 by software. If bit TMR2IE in register PIE1 was set to 1, 
this process generates an interrupt request.

The overflow time for Timer2 can be calculated as follows: With N being 
the number stored in register PR2, P1 the division factor for the prescaler, 
P2 the division factor for the postscaler, and Ti the period of the pulses 
entering the module, the overflow time To for Timer2 is:

	 To = P1× P2 × (N + 1) × Ti,	 (6.10)

in which P1 = 1, 4, 16 and P2 = 1, 2, 3, …, 16. Considering that Timer2 acts 
like a timer,

	 Ti = 4 × TOSC.	 (6.11)

Example 6.3

Program Timer2 to overflow every 1 ms using a main oscillator for the micro-
controller with a frequency of 4 MHz.

T2CON

– TOUTPS2TOUTPS3 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0
7 6 5 4 3 2 1 0

Figure 6.8 
T2CON: Timer2 control register. Bits T2CKPS1 and T2CKPS0 select the division factor for 
the prescaler, and bits TOUTPS3:TOUTPS0 select the division factor for the postscaler. Bit 
TMR2ON enables Timer2 counting.

Table 6.2

Bits in T2CON Register and Division Factors for Prescaler and Postscaler

T2CKPS1:T2CKPS0
Prescaler Division 

Factor TOUTPS3:TOUTPS0
Postscaler 

Division Factor

00 1 0000 1

01 4 0001 2

1x 16 0010 3

1111 16

Note: 	 The values T2CKPS1 and T2CKPS0 set the prescaler division factor, and the value 
of TOUTPS3:TOUTPS0 selects the postscaler division factor.



168	 Microcontrollers: Fundamentals and Applications with PIC

With a 4 MHz frequency, the period of the pulses entering Timer2 is Ti = 1 μs. 
To achieve an overflow time Td = 1 ms, Timer2 has to count up to 1000. This 
can be seen using Equation 6.10:

	

Td
Ti

P P (N )= × × + =1 2 1 1000.

This value can be achieved with P1 = 4, P2 = 10, and N = 24.
The following segment of code illustrates how to program Timer2 with these 

parameters.

				    List			   p = 16F873
				    include	 “P16F873.INC”
		  ;	
		  ; InitTimer2: Subroutine that programs Timer2 to divide by 1000.
		  InitTimer2:
				    clrf 		 T2CON					    ; Stop Timer2.
				    clrf 		 TMR2					     ; Set TMR2 to 0.
				    bsf		  STATUS, RP0			  ; Select bank 1.
				    bcf		  PIE1, TMR2IE		  ; Enable interrupt for Timer2.
				    movlw		 .24					     ; Count number for TMR2
				    movwf		 PR2					     ; in PR2.
				    bcf		  STATUS, RP0			  ; Select bank 0.
				    bcf		  PIR1, TMR2IF		  ; Overflow flag is reset to 0.
				    movlw 	 0x4A					     ; Postscaler = 10,  
													             ; Prescaler = 16.
				    movwf 	 T2CON					    ; Timer2 stopped.
				    bsf		  T2CON, TMR2ON		 ; Timer2 starts counting.
				    return
		  ;
		  ;
		  ; Wait_Timer2: Subroutine to wait for Timer2 overflow
		  ; that happens each 1 ms.
		  ;
		  Wait_Timer2:
				    btfss 	 PIR1, TMR2IF		  ; Timer2 overlow?
				    goto 		 Wait_Timer2			  ; No – wait.
				    bcf			  PIR1, TMR2IF			  ; Yes – Set flag TMR2IF to 0.
				    return							       ; Return.
				    end

6.2  The CCP Module

The capture/compare/PWM (CCP) modules are circuits that when used 
together with Timer1 and Timer2 allow for other forms of timing signals. 
A single microcontroller can have up to two CCP modules called CCP1 
and CCP2. A CCP module consists of two 8-bit registers called CCPRxH 
and CCPRxL, with x being 1 or 2 depending on the CCP module to which 
they refer. These registers can store the high and low bytes of a 16-bit 
number. Each CCP module also uses the CCPxCON register for control,  
and the bit CCPxIF in the PIR register to indicate the presence of an event. 



Timers	 169

If the interrupt for the module is enabled (the interrupt can be enabled 
with the bit CCPxIE in the PIE register), it produces an interrupt request 
when CCPxIF is set to 1.

Each CCP module can operate in the following modes:

Capture mode. The CCP module captures the value of Timer1 •	
when an external event occurs in pin CCPx.
Compare mode. The register in the CCP module stores a 16-bit •	
number that is compared with the value in Timer1. The result of 
the compare process may generate an event that may include a 
change in the CCPx pin.
Pulse width modulation (PWM) mode. The CCP module and •	
Timer2 make up a PWM modulator whose output is located in 
pin CCPx.

The CCPx pins (CCP1 or CCP2) are inputs when the module operates in 
capture mode and outputs when it operates in compare or PWM modes. 
There is a CCP pin for each CCP module inside the PIC microcontroller. 
These pins share functions with the port C pins. Capture and compare 
modes use Timer1 as a time base. When using these modes, Timer1 must 
be programmed as a timer or as a synchronized counter. In PWM mode, 
Timer2, which always works as a timer, determines the frequency of the 
PWM signal.

Because the CCP modules share functions with timers Timer1 and 
Timer2, for those PIC microcontrollers with two CCP modules, such as 
the PIC16F873, it is necessary to keep in mind that both modules share the 
timers. Table 6.3 shows the possible interactions that must be considered 
when programming the CCP modules.

The special function registers CCPxCON are used to program the CCP 
modules. Figure 6.9 shows the bits of these registers. The mode of work-
ing for the CCP registers is programmed with bits CCPxM3:CCPxM0. Bits 
DCxB1 and DCxB0 are only used in PWM mode.

Table 6.4 shows the values that must be set in bits CCPxM3:CCPxM0 in 
the registers CCPxCON to program the different operation modes for the 
CCP modules. These operation modes are explained in further detail in 
the following sections.

6.2.1  Capture Mode

Figure  6.10 shows the block diagram for the CCP module working in 
capture mode. The value of Timer1 is stored in registers CCPRxH and 
CCPRxL when a specific event related to pin CCPx in the module occurs. 
The capture for Timer1 can be programmed to occur with the raising or 
falling edges of the input pulses in pin CCPx or with the rising edges every 



170	 Microcontrollers: Fundamentals and Applications with PIC

Table 6.3

Interaction between CCP Modules

Mode for CCPx 
Module

Mode for CCPy 
Module

Interaction

Capture Capture Both modules use the same time base (Timer1).

Capture Compare The CCP module working as comparator must 
be configured to set Timer1 to 0 when the 
result of the comparison is positive.

Compare Compare The comparators must be configured to set 
Timer1 to 0 when the result of the comparison 
is positive.

PWM PWM Both PWM signals have the same period, given 
by the value in the PR2 register.

PWM Capture No interaction.

PWM Compare No interaction.

CCP×CON

– DC×B1– DC×B0 CCP×M3 CCP×M2 CCP×M1 CCP×M0
7 6 5 4 3 2 1 0

Figure 6.9 
CCPxCON registers used to control the CCP modules.

CCP×IF

CCPR×H

Enable
capture

CCPR×L

CCP×

CCP×M3: CCP×M0

TMR1L TMR1HCapture
control

Prescaler
1, 4, 16

Figure 6.10 
CCP module operating as a capture register for Timer1 for an event in pin CCPx.



Timers	 171

4 or 16 pulses. This programming is done with bits CCPxM3:CCPxM0, 
as shown in Table 6.4. After a capture, bit CCPxIF is set to 1. This event 
can be used as a flag by the program. Also, if the interrupt to the CCP 
module is enabled (bit CCPxIE in register PIE is set to 1), an interrupt 
request is generated. The CCPx pin must be configured as an input pin 
by setting to 1 the appropriate bit in the TRIS register from the parallel 
port in which the CCPx is located, which is normally port C.

Example 6.4

The capture mode in the CCP module can be used to measure time. This exam-
ple illustrates how to measure the period of a train of pulses using the CCP1 
module in a PIC16F873. The frequency of the main oscillator in this example 
is 4 MHz.

Figure 6.11 shows the simplified circuit being used. This consists of the CCP1 
module working in capture mode and Timer1. The main elements are the CCP1 
pin, the signal period (Tx) of which we want to measure the CCPR1 registers 
(made of CCPR1H and CCPR1L); the TMR1 register (made of registers TMR1H 
and TMR1L); and the prescalers for the CCP module and Timer1 with division 
factors Pc and P1, respectively.

Table 6.4

Values for CCPxM3:CCPxM0 Bits in the CCPxCON Register Associated with 
Operation Modes for the CCP Modules

Bits
CCPxM3:CCPxM0 Mode

00 00 Disable CCP module.

01 00 Capture Each falling edge.

01 Each rising edge.

10 Each 4 rising edges.

11 Each 16 rising edges.

10 00 Comparator Pin CCPx is initiated low and is set to high when 
the result of the comparison is positive. Bit 
CCPxIF is set to 1.

01 Pin CCPx is initiated high and is set to low when 
the result of the comparison is positive. Bit 
CCPxIF is set to 1.

10 Bit CCPIF is set to 1 when the result of the 
comparison is positive. CCPx pin is not affected.

11 Timer1 is set to 0 when the result of the comparison 
is positive. Bit CCPxIF is set to 1. CCPx pin is not 
affected.

11 xx PWM



172	 Microcontrollers: Fundamentals and Applications with PIC

To ensure the capture mode works correctly, Timer1 must be programmed 
as a timer to count machine cycles. Each machine cycle lasts TMC. From the 
schematic shown in figure 6.11 it can be seen how the capture of the changing 
value of Timer1 occurs every Pc × Tx seconds. With N1 and N2 being the values 
for TMR1 in two consecutive captures, Timer1 has changed in N = N2 – N1. In 
time units this means that the seconds elapsed between the two consecutive 
captures is N × P1 × TMC seconds. Therefore,

	 Pc × Tx = N × P1 × TMC

and

	
T N T

P Px
MC

c
= ×

/ 1

.

The ratio Pc/P1, which is the ratio of the division factors in the prescalers, 
can be used to adjust the resolution with which Tx is measured, because in 
a microcontroller the length of a machine cycle is already fixed. As Pc = 1, 4, 
16 and P1 = 1, 2, 4, 8, the best resolution is achieved with Pc = 16 and P1 = 1. 
These values allow for measuring the period Tx with a resolution equal to 1/16 

Timer1
prescaler

CCPR1

(Tx)

Tx

(TCM)
TMR1

Pc = 1, 4, 16

P1 = 1, 2, 4, 8
(P1×TCM)

(PC×TX)

(N2 – N1)×P1×TCM

PC×TX

CCP module
prescaler

Signal in CCP1
pin

Capture:
TMR1 = N2

Capture:
TMR1 = N1

(a)

(b)

CCP1

Figure 6.11 
CCP module in capture mode. (a) Simplified block diagram of CCP module with Timer1. 
(b) Time diagram showing two consecutive captures as a function of the period from the 
train of pulses Tx in pin CCP1, period of a machine cycle TMC, and the division factors for 
the prescalers.



Timers	 173

of the length of a machine cycle. For this to be true, it is necessary, however, 
for the input signal to remain stable at least during the 16 periods that are used 
to measure it.

On the other hand, if Pc  = P1, then N represents the amount of machine 
cycles for the period Tx. If TMC = 1 µs, then N is directly the length of the period 
Tx in microseconds. Because N is a 16-bit number, the longest period that can 
be measured using this method is 65536 µs. We leave it for the reader to calcu-
late the maximum period that can be measured if Pc/P1 = 16.

The following segment of code illustrates how to program Timer1 and the 
CCP1 module in capture mode to measure the period of pulses connected to 
pin CCP1 in a PIC16F873. The frequency of the main oscillator is 4 MHz and 
the division factors that have been chosen are Pc = P1 = 1. With these values, 
the difference between two consecutive captures is equal to the period to be 
measured expressed in microseconds.

					     List			   p = 16F873
					     include	 “P16F873.INC”
		  N1H		  equ		  20h				    ; High part of first capture.
		  N1L		  equ		  21h				    ; Low part of first capture.
		  NH			  equ		  22h				    ; High part of difference.
		  NL			  equ		  23h				    ; Low part of difference.
		  ; Init_capture: Subroutine to program module CCP1 in capture  
		  ; mode
		  ; with raising edges for the pulses at the CCP1 pin. Timer1 has  
		  ; been
		  ; programmed as timer with prescaler = 1.
		  Init_capture:
					     clrf		  T1CON				   ; Timer1 as timer,  
													             ; prescaler = 1,stop.
					     clrf		  CCP1CON			   ; Reset module CCP1.
					     bsf		  STATUS, RP0		 ; Select bank 1.
					     bsf		  TRISC, 2 		  ; Set CCP1 pin as an input.
					     bcf		  PIE1, TMR1IE	 ; Disable Timer1 interrupt.
					     bcf		  PIE1, CCP1IE	 ; Disable CCP1 interrupt.
					     bcf		  STATUS, RP0		 ; Select bank 0.
					     clrf		  PIR1				    ; Set interrupt flags to 0.
					     movlw 	 0x05				    ; Select capture mode with each  
													             ; raising edge.
					     movwf 	 CCP1CON			   ;
					     bsf		  T1CON, TMR1ON	; Start Timer1 counting.
					     return
		  ; Capture: This subroutine captures 2 values for Timer1 and  
		  ; calculates their difference.
		  ; The difference, a 16 bit number is returned.
		  ; in register NH (High part) and NL (low part).
		  Capture:
					     bcf		  PIR1, CCP1IF	 ; Set capture indicator to 0.
					     btfss 	 PIR1, CCP1IF	 ; CCP1IF = 1?
					     goto 		 Capture			   ; No – wait.
					     bcf		  PIR1, CCP1I		 ; Yes – Set capture indicator to  
													             ; 0 and
					     movf		  CCPR1L, W		  ; store the captured value in N1H  
													             ; and N1L.
					     movwf		 N1L
					     movf		  CCPR1H, W
					     movwf		 N1H
		  Capture2:								        ; Capture next value:
					     btfss		 PIR1, CCP1IF	 ; CCP1IF = 1?



174	 Microcontrollers: Fundamentals and Applications with PIC

					     goto		  Capture2			  ; No – wait
					     bcf		  PIR1, CCP1IF	 ; Yes – Set capture indicator to  
													             ; 0 and
													             ; subtract the captured values.
		  ; This carries out the operation CCPR1 - N1 ==> N:
					     movf		  N1L, W
					     subwf		 CCPR1L, W
					     movwf		 NL
					     btfss		 STATUS, C
					     goto		  Subt1
					     goto		  Subt0
		  Subt1:
					     decf		  CCPR1H, f
		  Subt0:
					     movf		  N1H, W
					     subwf		 CCPR1H, W
					     movwf		 NH
					     return
					     end

6.2.2  Compare Mode

Figure 6.12 shows the block diagram for the CCP module working in com-
pare mode. This mode compares the changing value of Timer1 with the 
value stored in registers CCPRxH and CCPRxL. When these values are 
equal, the result of the compare is positive and the module generates a 
specific event. The nature of this event can be programmed by using bits 
CCPxM3:CCPxM0 in the CCPxCON register as shown in table 6.4.

The events that can be programmed are to set pin CCPx to 0 or 1, and 
the reset for Timer1. When using the CCPx pin, it must be configured as 
an output by setting to 0 the appropriate bit in the TRIS register for the 
parallel port where the CCPx pin is located, usually port C. In all cases, 
when the result of the comparison is positive, bit CCPxIF in the PIR regis-
ter is set to 1. This bit can be checked by the program. If the CCP module 

TMR1L TMR1H

Reset to Time1

Comparator Output
control

From TRIS
register

CCPRxH

CCPxIF

CCPRxL

CCPx

CCPxM3:CCPxM0

Figure 6.12 
CCP module as comparator. When the value in the CCPRx register is equal to the value in 
the TMR1 pair, an event is generated in pin CCPx. The characteristics of the event are pro-
grammed using bits CCPxM3:CCPxM0 from the CCPxCON register.



Timers	 175

interrupt is enabled (by setting bit CCPxIE in the PIE register to 1), it gen-
erates an interrupt request.

One of the events that can be generated as the result of the compari-
son being positive is to reset Timer1. This option increases the possibili-
ties for Timer1 as it can work as a 16-bit comparator with a count module 
equal to the value stored in the CCPRxH and CCPRxL registers in the CCP 
module.

Example 6.5

Using Timer1 as a 16-bit timer with registers CCPR1H and CCPR1L storing 
the count module. For this configuration, the CCP1 module is programmed 
in compare mode, generating a reset for Timer1 each time that the compari-
son between registers CCPR1 (CCPR1H:CCPR1L) and TMR1 (TMR1H:TMR1L) 
is positive. In this example Timer1 is programmed as a timer with a prescaler 
factor of 1.

The following is the assembler code:

					     List			   p = 16F873
					     include	 “P16F873.INC”
		  ;
		  ; Init_compare: Subroutine to program module CCP1 in compare  
		  ; mode
		  ; with Timer1 reset when the result is positive. CCP1 pin not  
		  ; used.
		  ; Timer1 programmed as timer with prescaler = 1.
		  Init_compare:
					     clrf		  T1CON				   ; Timer1 as timer. Prescaler = 1.  
													             ; Stopped.
					     clrf		  CCP1CON			   ; Reset CCP1 module.
					     bsf		  STATUS, RP0		 ; Select bank 1.
					     bcf		  PIE1, TMR1IE	 ; Disable Timer1 interrupt.	
					     bcf		  PIE1, CCP1IE	 ; Disable CCP1 module interrupt.
					     bcf		  STATUS, RP0		 ; Select bank 0.
					     clrf		  PIR1				    ; Set interrupt flags to 0.
					     movlw 	 0x0B				    ; Select comparator mode with  
													             ; Timer1 reset.
					     movwf 	 CCP1CON	 ;
					     bsf		  T1CON, TMR1ON	; Start Timer1 count.
					     return
		  ;
		  ; Compare: This subroutine waits for the comparison in the CCP1  
		  ; module, programmed
		  ; as comparator is positive. This mode compares the CCPR1  
		  ; (CCPR1H and CCPR1L)
		  ; and TMR1 (TMR1H and TMR1L) registers. When CCPR1 = TMR1, the  
		  ; result is positive
		  ; and the subroutine ends.
		  ; 			  Inputs: In CCPR1H and CCPR1L, count module of Timer1.
		  Compare:
					     btfss		 PIR1, CCP1IF	 ; CCPR1 = TMR1?
					     goto		  Compare			   ; No – Wait.
					     bcf		  PIR1, CCP1IF	 ; Yes – Set comparison flag to 0.
					     return						      ; Return.
					     end



176	 Microcontrollers: Fundamentals and Applications with PIC

6.2.3  PWM Mode

When working in pulse width modulation (PWM) mode, each CCP mod-
ule and Timer2 make up a pulse width modulator whose output is in pin 
CCPx for the module. A PWM signal is a train of pulses with variable TON 
and fixed period T, as seen in Figure 6.13.

A train of pulses can be characterized by its duty cycle defined as the 
ratio between the time the signal is active and its period:

	

Duty cycle (%) =
T
ONT
×100

	 (6.12)

For example, if the pulses are active for half of a period, the duty cycle 
is 50%; if the pulses are active during the whole period, the duty cycle is 
100%. In a PWM signal, its duty cycle changes depending on the modu-
lating signal. Another parameter normally used to characterize a PWM 
signal is its resolution. In digital systems, time is a discrete variable caus-
ing TON to not change continuously but in different discrete time steps, 
ΔTON. If this interval is a submultiple of the signal period, the time that the 
pulses are active, TON, can only take the following discrete values:

	 TON = 0, ΔTON, 2ΔTON, 3ΔTON, …, T.	 (6.13)

The value R, which is the number of times that the period T can be 
divided, defines the resolution of the PWM signal:

	
R T

TON
=
∆

.	 (6.14)

If R is a power of 2, that is, R = 2r, r is the resolution expressed in bits:

.	
r R
=

lg
lg 2 	 (6.15)

1
0

TON T´ON

T T

Figure 6.13 
PWM signal. The width of the pulses is variable (TON, T’ON), but the period T is constant.



Timers	 177

The resolution (r) of a PWM signal gives the number of necessary bits 
to determine any possible duration TON for that signal. It measures the 
number of parts in which we can divide the PWM pulses. For example, if 
R = 1024, the PWM signal resolution is 10 bits. This means that the dura-
tion TON of the pulses can change at time increments of T/R.

In a CCP module programmed as a PWM modulator, the period T of 
the PWM signal is determined by the value of the PR2 register in Timer2. 
For each period, TON is determined by bits DCxB9:DCxB0. These bits are 
distributed between registers CCPRxL and CCPxCON in the follow-
ing manner: The 8 most significant bits, DCxB9:DCxB2, come from the 
CCPRxL register. The 2 least significant bits, DCxB1:DCxB0, come from 
bits CCPxCON<5:6> from the CCPxCON register. Figure 6.14 shows the 
configuration acquired by the CCP and Timer2 modules working in PWM 
mode. The modulator compares the value stored in the PR2 register with 
the changing value in TMR2. When both values are equal, this means that 
a time equal to the period of the PWM signal has elapsed. When this hap-
pens, the following actions take place:

DCxB9:DCxB0

CCPRxL

CCPRxH

Comparator

Comparator

Reset

From TRIS
register

OSC

Timer2
prescaler

S   Q

R

P
2 bits

1:4TMR2

PR2

CCP
module
Timer2
module

CCPx

CCPxCON<5:4>

Load M(10)

(10)

(10)

(8)

(8)

(M)

(N )

Figure 6.14 
CCP module in PWM mode. The PWM is available at the pin CCPx. The signal period is 
determined by the value N stored in the PR2 register for Timer2. The pulse width is defined 
by the value M made up by bits DCxB9:DCxB0.



178	 Microcontrollers: Fundamentals and Applications with PIC

TMR2 register is set to 0 in the next machine cycle.•	
The input S for the RS bistable becomes active, making the output •	
Q become 1. Therefore, if the CCPx pin is programmed as an out-
put by using the appropriate bit in the TRIS register, the pin also 
becomes high.
The value stored in DCxB9:DCxB0 bits is loaded in CCPRxH and •	
in two bits internal to the module. This value is proportional to 
the duration TON of the PWM signal pulses.

Once these actions have taken place, a new period for the PWM signal is 
initiated. The value DCxB9:DCxB0, which is proportional to the duty cycle 
for the PWM signal, is compared against the changing value in TMR2, 
plus the two internal bits. When both values are equal, the input R to the 
bistable becomes active, making its output Q become 0. If the CCPx pin 
has been programmed as an output, this pin becomes low. The resulting 
PWM signal and associated parameters are shown in Figure 6.15.

The period (T) and the duration (TON) of the PWM signal pulses can be 
calculated as follows:

	 T = (N + 1) × P × 4 × TOSC,	 (6.16a)

	 TON = M × P × TOSC,	 (6.16b)

with N being the value stored in the PR2 register, M the number made of 
bits DCxB9:DCxB0, P the prescaler division factor for Timer2 (P = 1, 4, 16), 
and TOSC the period of the main oscillator in the microcontroller. Because 
M is a 10-bit number, it can be written as

TON ~ DC×B9:DC×B0

T ~ PR2 + 1

TMR2 = 0 TMR2 = M TMR2 = N,
TMR2 = 0

Figure 6.15 
PWM signal generated by CCP module. Its duty cycle is determined by the value M from 
bits DCxB9:DCxB0 and its period is determined by the value N stored in PR2. The TMR2 
register increases in each machine cycle from 0 to N. When it reaches N, it is set to 0 in the 
next machine cycle, thus starting a new period for the PWM signal. The signal starts its 
duty cycle when TMR2 is set to 0 and ends when it reaches the value M.



Timers	 179

	 M = 4 × M8 + M2,	 (6.17)

with M8 being the number stored in CCPRxL and M2 the 2-bit number 
stored in CCPxCON<5:4>. To ease the change of pulse durations, it may be 
desirable to change only the CCPRxL register; then bits M2 may be kept at 
0. In this situation, considering Equations 6.16b and 6.17, the duration of 
the pulses can be found as

	 TON = 4 × M8× P × TOSC.	 (6.18)

The length of the PWM pulses can be divided in M parts. Because M is 
a 10-bit number, it would be easy to conclude that the PWM resolution is 
10 bits. However, the real resolution is lower because the highest value of 
M is limited by the value N stored in PR2. For this reason, the resolution 
depends on N. It is possible to calculate the resolution of the PWM module 
with the following reasoning: The smallest possible value for TON is

	 ΔTON = P × TOSC.	 (6.19)

Therefore, the number of times that this value fits into the period T is

	
R N P T

P T
N=

+ × × ×
×

= × +
( ) ( )1 4 4 1OSC

OSC

.	 (6.20)

Because (N  +  1) is an n-bit number (n  =  1, 2, …, 8) and considering 
Equation 6.15, the resolution in bits that it is possible to achieve is

	 r = n + 2.	 (6.21)

From Equation 6.18, and not using the 2 least significant bits from M, the 
lowest value for TON is

	
∆T T

M
P TON

ON
OSC= = × ×

8
4 .	 (6.22)

In this case, the resolution is

	
R N P T

P T
N=

+ × × ×
× ×

= +
( )1 4

4
1OSC

OSC
.	 (6.23)

Expressing the resolution in bits results in

	 r = n.	 (6.24)



180	 Microcontrollers: Fundamentals and Applications with PIC

Example 6.6

Program the CCP1 module in a PIC16F873 to generate a PWM signal. The 
PWM signal must have a constant period of 1 ms and variable duty cycle. The 
frequency of the main oscillator is 4 MHz (TOSC = 0.25 µs).

The period T for the PWM signal depends on the value N stored in the PR2 
register. The width of the pulses TON depends on the value M from the 10 bits 
distributed between the 8 bits from the CCPR1L register (these make up the 8 
most significant bits of M – M8) and the 2 bits from CCP1CON<5:4> that make 
up the 2 least significant bits of M – M2. This example uses only the register 
CCPR1L to set the width of TON. Therefore, bits CCP1CON<5:4> are always 
kept at 0.

Considering TOSC = 0.25 µs and T = 1 ms, using Equation 6.16 we find

	 (N + 1) × P = 1000,

with P being the prescaler factor for Timer2, P = 1, 4, 16. Choosing P = 4, the 
number to store in the PR2 register is N = 249.

The variable width of the pulses is achieved by using a value between 0 and 
249 in the CCPR1L register. The following is the code in assembler language:

					     List	 p = 16F873
					     include	 “P16F873.INC”
		  ;
		  ; Init_pwm: Subroutine to program CCP1 module in PWM mode
		  ; in order to generate a PWM signal with a period of 1 ms and a
		  ; duty cycle of 50%.
		  ; The value of the duty cycle can be changed later.
		  Init_pwm:
						      movlw		 0x01					     ; Program Timer2 stopped
						      movwf		 T2CON					    ; and prescaler = 4.
						      clrf		  CCP1CON				    ; Reset module CCP1.
						      clrf 		 TMR2					     ; Set Timer2 to 0.
						      movlw 	 .124					     ; PWM signal will have
						      movwf 	 CCPR1L				    ; duty cycle of 50%.
						      bsf 		  STATUS, RP0			  ; Select bank 1.
						      movlw 	 .249					     ; Count module for Timer2
						      movwf 	 PR2					     ; that is the period of the  
															               ; PWM signal.
						      bcf		  PIE1, TMR2IE		  ; Disable interrupt in  
															               ; Timer2.
						      bcf		  PIE1, CCP1IE		  ; Disable interrupt in module  
															               ; CCP1.
						      bcf 		  TRISC, 2				   ; Select pin CCP1 as output.
						      bcf 		  STATUS, RP0			  ; Select bank 0.
						      clrf 		 PIR1					     ; Set interrupt flags to 0.
						      movlw 	 0x0C					     ; Module CCP1 in PWM mode
						      movwf 	 CCP1CON				    ; with DC1B1:DC1B0 to 0  
															               ; (M2 = 0).
						      bsf 		  T2CON, TMR2ON		 ; �Start counting for Timer2.
						      return
		  ;
		  ; �TON_pwm: This subroutine changes the duty cycle for the PWM 

signal
		  ;					     to the value stored in W.
		  ;					     Inputs: A number between 0 and 249 in W.



Timers	 181

		  TON_pwm:
						      movwf	CCPR1L
						      return
						      end





183

7
Interrupts

This chapter describes the interrupts and interrupt systems in microcon-
trollers. It starts by describing basic concepts such as the possible sources for 
interrupts, the resources that the microcontroller needs for handling them, 
and how interrupts are serviced. This is followed by a deeper description of 
the interrupts in medium-end PIC microcontrollers with a special empha-
sis on the interrupt service subroutines. The chapter finishes by describing 
several applications in PIC microcontrollers that use interrupts.

7.1  Basic Concepts

7.1.1 I nterrupt Requests and Associated Resources

An interrupt request (or more commonly just an interrupt) is an internal 
or external event that when serviced makes the microcontroller inter-
rupt the execution of the current program and execute another program 
instead. Generally, as shown in Figure 7.1, once the program that services 
the interrupt request is finished, the microcontroller continues execut-
ing the instructions of the program that was being executed before the 
interrupt.

Interrupt requests are normally events asynchronous to the pro-
gram being executed by the microcontroller. This means that an inter-
rupt request can occur at any time during the execution of a program. 
Therefore, it is not possible to predict which instruction is being executed 
by the microcontroller when an interrupt is serviced. A microcontroller 
has several sources of interrupts, which can be external or internal. 
Internal interrupts can be originated in the microcontroller’s input/output 
(I/O) modules, its memory, or its CPU. The most common internal inter-
rupt sources are timers and other I/O modules. Events that occur in the 
memory, for example, writing in the data EEPROM, or events that occur  
in the CPU, for example a division by zero, are less common. External 
interrupts originate in peripherals and reach the microcontroller through 
one of its pins and associated ports.

Microcontrollers have resources to receive and process these interrupt 
requests. Generally, each device that can be an interrupt source has two 



184	 Microcontrollers: Fundamentals and Applications with PIC

associated bits. These bits may be in the same register or in different regis-
ters. The function of the first bit is informative; it is a flag activated by the 
device that requests the interrupt. This bit can be checked by the program 
depending on the technique used to service the interrupt. The other bit 
has a control function. It is used to allow or disallow the interrupt request 
to reach the CPU. This is equivalent to enabling or disabling the possibil-
ity of the device to generate interrupt requests. This control bit can be 
manipulated by the program.

Microcontrollers also have one bit for global control of interrupts. This 
bit allows or disallows any interrupt request to reach the CPU. This is 
equivalent to enabling or disabling the whole interrupt system in the 
microcontroller. In order for an interrupt request to reach the CPU and 
be serviced, both the global interrupt system and the specific interrupt 
must be enabled. The control bits used to allow or disallow interrupt 
requests to reach the CPU are called masks. This is the reason for the 
names maskable interrupts and non-maskable interrupts. Maskable 
interrupts are those that may be enabled or disabled by software. Non-
maskable interrupts are those that cannot be disabled by software and 
therefore are always enabled.

Figure 7.2 illustrates the path for all the interrupt requests to reach 
the CPU. Maskable interrupts have control bits associated with each 
interrupt source as well as the control bit for the global system. For 
a maskable interrupt to reach the CPU, its specific control bit and the 
global control bit must be set to 1. Non-maskable interrupts will always 
reach the CPU and will be serviced independently of the global control 
bit status.

When an interrupt request reaches the CPU and is serviced, the inter-
rupt system is disabled (the global control bit is set to 0). Any new inter-
rupt request will not reach the CPU. To be able to service new interrupt 
requests, the programmer must enable the system again. This is normally 
done by the same program that services the interrupt.

Interrupt
request

Program
instructions

Interrupt service program

Figure 7.1 
When an interrupt request is serviced by the microcontroller, the microcontroller finishes 
the instruction being executed and jumps to execute the interrupt service program. Once 
this finishes, it continues executing the program that was interrupted.



Interrupts	 185

7.1.2  Servicing Interrupt Requests

Servicing an interrupt request means to interrupt the execution of the 
current program and to move it to execute another program, as shown 
in Figure  7.1. When the second program ends, it is necessary to con-
tinue with the program that was interrupted. The interrupt request that 
reaches the CPU is serviced after the CPU finishes the instruction it 
was executing. Because it is not possible to predict when an interrupt 
request will take place, it is necessary to remember the address for the 
next instruction so the program can continue once the interrupt service 
ends. This is done by storing the program counter (PC) in the stack, in 
a similar way to how it is stored in subroutine calls. For this reason, 
it is convenient that the service interrupt program is structured in the 
same way that subroutines are structured. The return instruction that 
finishes the execution of this subroutine allows a return to the program 
that was interrupted. Therefore, the interrupt service program is a sub-
routine that is “called” through an interrupt. This is equivalent to saying 
that an interrupt request is the same as inserting a subroutine call in an 
unpredictable location in the program.

Device

Device

Flag

Flag

Device Flag

Control

Non-maskable
interrupt Interrupt

request to
CPU

Maskable
interrupts

ControlControl

Bits for the
individual control

of maskable
interrupts

Bit for the global control
of maskable interrupts

Flags
associated to

each interrupt
source

Interrupt
sources

Figure 7.2 
Path followed by interrupt requests in a microcontroller. Each interrupt source has a flag 
that is active with the interrupt request. Maskable interrupts reach the CPU if both the indi-
vidual and global flags are enabled. This can be done by the individual and global control 
bits. Non-maskable interrupts always reach the CPU.



186	 Microcontrollers: Fundamentals and Applications with PIC

In general, the structure for the 
interrupt service subroutine is no  
different than that for standard 
subroutines. However, because it 
is not possible to predict at what 
point in the program the interrupt 
request will take place, the pro-
grammer needs to take some addi-
tional precautions when writing 
the interrupt service subroutine. 
The execution of this subroutine 
must leave unchanged the values 
of registers and bits with which 
the program is working. For exam-
ple, the values of the accumula-
tor (or the W register), the status 
of similar registers, as well as the 
arithmetic indicators cannot be 
altered due to the execution of the 
interrupt service subroutine. To 
keep the integrity of these regis-
ters, it is necessary to store their 
current values at the beginning of 
the subroutine. Before returning to 
the program that was interrupted, 

these values are retrieved and restored in the registers. It is also necessary 
to disable the interrupt flag (setting it to 0) because, in general, this flag is 
not automatically disabled, and then enable the interrupt system in order 
to return to the program that was interrupted. Figure 7.3 shows the block 
diagram for a generic interrupt service subroutine.

The steps to service an interrupt request are:

	 1.	The microcontroller completes the execution of the current 
instruction.

	 2.	The PC value is stored in the stack in order to remember the 
address of the instruction to be executed after finishing the inter-
rupt service program.

	 3.	The address of the interrupt service subroutine is stored in the 
PC, making the program branch to that address and start the exe-
cution of the subroutine.

	 4.	The interrupt service subroutine is executed. As in any other sub-
routine, it ends with a return instruction.

	 5.	When executing the return instruction, the microcontroller con-
tinues executing the program that was interrupted.

Interrupt
service

subroutine

Store in the stack the
values of accumulator,

status register, etc.

Body of subroutine

Retrieve the values
stored in the stack

Disable interrupt flag

Enable interrupts

Return

Figure 7.3 
General structure of 
an interrupt service 
subroutine.



Interrupts	 187

7.1.3  Fixed and Vectored Interrupts

There are two possible ways to provide the CPU with the address for the 
interrupt service subroutine:

	 1.	The interrupt service subroutine is stored in a fixed memory loca-
tion that the CPU already knows.

	 2.	At the time of the interrupt being requested, the interrupt service 
subroutine address is given to the CPU.

The first solution is known as a fixed interrupt request. In this type of 
interrupt, the microcontroller always jumps to a fixed location in memory. 
This address has the first instruction in the interrupt service subroutine. 
Depending on the type of microcontroller, there can be a different mem-
ory address assigned to each interrupt source, or as happens with PIC 
microcontrollers, there is a single address for all interrupts. In any case, 
these addresses are always fixed. Because of its simplicity, this type of 
interrupt is widely used in microcontrollers.

The second solution is more flexible but it is also more difficult to imple-
ment. When the interrupt is requested, the address for the interrupt service 
subroutine or other information to find it is given to the CPU. This infor-
mation given to the CPU is known as an interrupt vector, thus giving the 
name of this technique: vectored interrupts. When using vectored interrupts, 
the interrupt service subroutine may be located at any address in the pro-
gram memory. The interrupt vector can have a different structure: the sim-
plest structure is the address of the subroutine. It can also be a number that 
acts as a pointer to the subroutine (with the vector, the CPU looks for the 
subroutine address from a table of addresses located in memory). Vectored 
interrupts are widely used in microprocessors but not in microcontrollers.

Example 7.1

Interrupt system in MCS51 microcontrollers. A typical microcontroller from 
the 8051 family has five interrupt sources, as shown in Figure 7.4: two external 
interrupts, two interrupts from timers, and one interrupt from the serial port. All 
of them are maskable interrupts.

Each interrupt has an associated indicator (serial port interrupt has two of 
them) that is set to 1 if the interrupt is requested. These indicators are stored 
in the special function registers TCON and SCON in the microcontroller. Each 
interrupt source can be individually and globally enabled using control bits in 
the microcontroller register IE.

The interrupts in the MCS51 microcontroller family are fixed. Each interrupt 
source is assigned a different address to store the interrupt service subroutine. 
Table 7.1 shows the addresses associated with every interrupt.

This approach allows prioritizing of interrupt service. Each interrupt source 
can have two priority levels: low or high. A high priority interrupt can interrupt 



188	 Microcontrollers: Fundamentals and Applications with PIC

a low priority interrupt but a low priority interrupt cannot interrupt a high prior-
ity interrupt. Interrupts with the same priority level are serviced using an inter-
nal priority scale that from high to low is: external interrupt 0, timer 0, external 
interrupt 1, timer 1, and serial port.

External
interrupt 0

External
interrupt 1

Timer 0

Timer 1

Serial port

Interrupt
sources Flags

TI

RI

TF1

IE1

IE0
EX0

EX1

ET0

ET0

ES 1

1

1

1

1

1

0 0

0 0

0

0

0

0

0

0 0

0 0

0 0

1

1

1

1

1

1

1

1

1

PX0

PX1

PT0

PT1

PS

Individual
enables Global

enable
Priorities
control

Low-priority
interrupts

EA

TF0

High-priority
interrupts

Figure 7.4 
Interrupt system structure for a typical microcontroller in the MCS51 family.

Table 7.1

Associated Addresses for Every Interrupt Source in a Microcontroller from 
the MCS51 Family

Interrupt Source Address

External interrupt 0 0003h

Timer 0 000Bh

External interrupt 1 0013h

Timer 1 001Bh

Serial port 0023h

Note: The addresses contain the first instruction of the appropriate service interrupt 
subroutine.



Interrupts	 189

7.2  Interrupts in PIC Microcontrollers

7.2.1 I nterrupt Sources and Associated Registers

Interrupts in medium-end PIC microcontrollers are fixed, maskable inter-
rupts. This means that interrupts can be globally enabled or disabled, as 
well as each interrupt source can be individually enabled or disabled, 
as shown in Figure 7.7. For an interrupt request to be serviced, both the 
individual and global interrupts must be enabled. Global interrupts are 
enabled by bit GIE (global interrupt enable) from the INTCON special 
function register. The devices that can generate interrupt requests are 
enabled or disabled by bits in the INTCON, PIE1, and PIE2 registers.

Because of fixed interrupts, when an interrupt is serviced, the microcon-
troller executes the instruction stored in address 4 in program memory. 
When writing the interrupt service subroutine, the programmer must first 
find out the source that requested the interrupt. This is done by reading 
the appropriate bits in the special function registers (INTCON, PIR1, and 
PIR2) associated with the interrupt system in PICs.

When an interrupt is requested (assuming the global system and the 
specific interrupt source interrupts are enabled), the microcontroller 
finishes executing the current instruction, stores the value of the pro-
gram counter in the stack, and jumps to address 4 in program memory. 
The time elapsed between the moment the interrupt is requested and 
the execution of the first instruction in the interrupt service subroutine 
located in address 4 ranges from 3 to 3.75 machine cycles. This time 
is called latency time. The exact latency time depends on the specific 
moment within a machine cycle in which the interrupt is requested 
and whether the request was internal or external. Figure 7.5 illustrates 
the operations carried out by the microcontroller during the latency 
time. First, it must finish with the instruction being executed when the 
interrupt was requested. Then, the value of the program counter (PC) 
pointing to the next instruction is stored in the stack. Finally, the micro-
controller sets the PC to address 0004, making the program jump to 
execute the first address for the interrupt service program. When an 
interrupt request is being serviced, the global interrupt system is dis-
abled (bit GIE set to 0).

Each I/O module can generate at least one interrupt request. The pos-
sible interrupt sources are:

External interrupt in pin INT in the microcontroller•	

Interrupt due to a logic change of state in inputs RB4:RB7 in port B•	

Interrupt due to Timer0, Timer1, or Timer2 overflow•	

Interrupt due to an event in the CCP module•	



190	 Microcontrollers: Fundamentals and Applications with PIC

Interrupt in the USART serial port•	

Interrupt due to the A/D converter•	

All medium-end PIC microcontrollers use at least one special function 
register to control interrupts: the INTCON register. This register controls 
the external interrupts (from pin INT), the interrupt due to changes in 
pins RB4 to RB7, and the interrupt due to Timer0 overflow. It also has a bit 
(GIE) to enable interrupts globally. The remaining interrupt sources are 
controlled with registers PIE1, PIR1, PIE2, and PIR2. Figure 7.6 shows the 
bits in the interrupt control register INTCON.

The details for each bit are:

GIE (global interrupt enable). This bit enables (GIE = 1) or disables 
(GIE = 0) the microcontroller’s global interrupt system. When an 

GIE PEIE T0IE INTE RBIE

INTCON

Bits to enable interrupts Interrupt flags

T0IF INTF RBIF
7 6 5 4 3 2 1 0

Figure 7.6 
INTCON register for interrupt control.

PC value
Instruction

fetched

Instruction
executed

Inst (PC–1) Inst (PC) Inst (0004)--

Inst (PC) Inst (PC+1) Inst (0005)Inst (0004)-

PC PC + 1 00050004PC + 1

Bit GIE Enabled Disabled

Latency

Interrupt request is
produced

Finish current
instruction

Store value of
PC in the stack

Start interrupt service
subroutine

Time
0 TMC 2TMC 3TMC 4TMC 5TMC

Figure 7.5 
Microcontroller operations during latency time: the current instruction is finished, the 
value of the PC is stored in the stack, and the PC is loaded with 0004, causing it to execute 
the first instruction in the interrupt service subroutine. When this subroutine is executed, 
the interrupt system is disabled. The instruction retfie, used to return to the interrupted 
program, enables the interrupt system again.



Interrupts	 191

interrupt is requested, this bit is automatically set to 0. Therefore, 
the interrupt systems will be disabled until GIE = 1. The return 
instruction at the end of the interrupt service subroutine (retfie) 
sets bit GIE to 1, thus enabling the global interrupt system for the 
PIC. In a reset, bit GIE is set to 0, disabling the interrupt system.

PEIE (peripheral interrupt enable). This bit enables interrupt sources 
not present in the INTCON register but in the PIE registers.

T0IE, T0IF. These bits are related to Timer0 interrupt. When 
T0IE  =  1, the Timer0 interrupt is enabled. T0IF indicates over-
flow in Timer0. When this bit is set to 1 it generates an interrupt 
request if T0IE = 1.

INTE, INTF. These bits are related to the external interrupt. Bit INTE 
enables this interrupt. Bit INTF is a flag that indicates the detec-
tion of an edge (raising or falling) in the input pin INT.

RBIE, FBIF. These bits are related to the interrupt due to a change 
of level in bits RB4 to RB7. RBIE = 1 enables this interrupt. RBIF 
is a flag that indicates a change in one of the pins RB4 to RB7. If 
RBIE = 1, an interrupt is produced.

Figure 7.7 illustrates the operation of bits in the INTCON register. The 
external interrupt request is done through pin INT. This pin shares func-
tions with pin RB0 from port B in most of the medium-end PIC microcon-
trollers. This interrupt is produced by an edge in the signal connected to 

T0IF

T0IE

PEIE

From PIR and
PIE registers

INTF

INTE
RBIF

RBIE

Individual interrupt
enable

Individual
interrupt
requests

GIE
Global interrupt

enable

To CPU

Figure 7.7 
Role of the bits in the INTCON register in the interrupt system for medium-end PIC 
microcontrollers. The system is enabled or disabled with bit GIE. Each interrupt source 
has a control bit that enables or disables their interrupt request. Interrupt requests are 
shown in the flags T0IF, INTF, and RBIF independent of their progress in reaching the 
CPU.



192	 Microcontrollers: Fundamentals and Applications with PIC

pin INT. Bit INTEDG in the OPTION register (bit OPTION<6>) selects a 
rising or falling edge. The external interrupt is flagged by bit INTF in the 
INTCON register, and is enabled or disabled with bit INTE in this same 
register.

If pins RB4 to RB7 have been programmed as inputs and there is a 
change of logic level in the signals at any of these inputs, an interrupt 
request is generated. In this case, bit RBIF in the INTCON register is set to 
1. This interrupt can be enabled or disabled with bit RBIE from the same 
register. This interrupt can be used to wake up the microcontroller when 
it is in low-power mode (sleep mode).

Figure 7.8 shows a simplified circuit used to generate the interrupt due 
to level changes in any of the inputs RB4 to RB7. The signal at the pin is 
sampled twice in two different time intervals corresponding to Q1 and 
Q3 in the machine cycle (Figure 2.2). If the logic level for the signal at the 
pin at the sampling times has changed, the output Q for the D latches 
will be different, making the output of the XOR gate equal to 1. This 
sets bit RBIF to 1, therefore generating the interrupt request. For this 
process to take place, the pins must be configured as input pins, that is, 
bit TRISB<i> = 1.

The registers PIE and PIR control the interrupts for the different periph-
eral modules in the PIC microcontroller. The PIE registers (PIE1, PIE2) 
contain the bits to enable or disable interrupts from peripherals. The 
PIR registers (PIR1, PIR2) contain the bits that indicate an interrupt was 
requested by the different peripherals. The structure of these registers, 
that is, the meaning of the bits and their position within a register, change 
from one PIC to another.

TRISB<i>

TTL

Q1

Q D

G

Q D

G

Q3

RBIF

From the other
circuit pins

RB<4:7>

RB<i>

(i = 4, 5, 6, 7)

Figure 7.8 
Simplified circuit associated to pins RB4 to RB7 programmed as inputs. The figure illus-
trates the generation of interrupts due to changes in the logic level at the inputs. Q1 and Q3 
are internal signals corresponding to the states with their same name in a machine cycle 
(refer to Figure 2.2).



Interrupts	 193

Example 7.2

Registers PIE and PIR in the PIC16F87x. The structure and composition of the 
PIE and PIR registers depend on the model of PIC used because the avail-
able I/O modules also depend on each device. The family of microcontrollers 
PIC16F87x has two PIE registers (PIE1 and PIE2) and two PIR (PIR1 and PIR2) 
registers. Their structure is shown in Figure 7.9. Table 7.2 shows the name of the 
bits and the I/O modules associated with them.

For an interrupt request to really interrupt the program being executed, 
first it is necessary that the global interrupt system in the PIC is enabled. 
This means that bit GIE in the INTCON register must be 1. Second, it is 
necessary for the interrupt source to also be enabled. For example, in the 
case of an external interrupt, bit INTE in the INTCON register must be 1. 
In these conditions, the request is successful. During the execution of the 
interrupt, bit GIE is automatically set to 0, disabling interrupts. Therefore, 

PSPIEPIE1

PIE2

PIR1

PIR2

ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE

PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF

- - - EEIE BCLIE - - CCP2IE

- - - EEIF BCLIF - - CCP2IF

7 6 5 4 3 2 1 0

Figure 7.9 
PIE and PIR registers in PIC16F87x microcontrollers.

Table 7.2

Some of the Bits in the PIE and PIR Registers and I/O Associated with Them

Control Bit in PIE 
Register Flag Bit in PIR Register Interrupt Source

TMR1IE TMR1IF Timer1

TMR2IE TMR2IF Timer2

CCP1IE CCP1IF CCP1

CCP2IE CCP2IF CCP2

RCIE RCIF USART (reception)

TXIE TXIF USART (transmission)

ADIE ADIF A/D converter

PSPIE PSPIF PSP

SSPIE SSPIF SSP

BCLIE BCLIE SSP (I2C bus collision)

EEIE EEIF Data EEPROM



194	 Microcontrollers: Fundamentals and Applications with PIC

new interrupts will not be serviced. The global interrupt system is enabled 
again when the microcontroller executes the instruction retfie to return to 
the program that had been interrupted. The instruction retfie sets bit GIE 
to 1, thus enabling the global interrupt system again. This sets the PIC 
microcontroller ready to service new interrupt requests.

When a reset is produced, bit GIE is set to 0 and the microcontroller 
will not service any interrupt request after a reset. For example, when the 
microcontroller is first powered up, it starts working with the interrupt 
system disabled. The programmer must enable interrupts by setting bit 
GIE to 1.

The bits that control individual interrupts (T0IE, INTE, etc.) are not 
modified when an interrupt is requested. The individual interrupt flags 
(T0IF, INTF, etc.) are automatically set to 1 to inform about the interrupt 
request. They may be set back to 0 by the program that services the inter-
rupt request.

7.2.2 I nterrupt Service Subroutine Structure

Interrupts are events that can occur at any time during the execution of 
any instruction. It is not possible to predict the instruction being executed 
when an interrupt request reaches the CPU. This situation forces the pro-
grammer to take precautions to keep the integrity of the registers that are 
used by both the interrupted program and the program that services the 
interrupt. The most commonly used registers are the W and the STATUS. 
Therefore, their current values when the interrupt is requested must be 
stored in memory, and once the service interrupt subroutine has finished, 
these values must be restored to continue with the execution of the pro-
gram. In most microprocessors and microcontrollers, the values from the 
registers are stored in the stack. This is done by using instructions such as 
PUSH register to store a register in the stack and POP register to retrieve 
the values. The LIFO structure of the stack allows nesting several inter-
rupt service subroutines. Thus, the interrupt service subroutine can be 
interrupted by a second one even if the first one was not finished yet. This 
originates very complex and powerful interrupt systems.

Medium-end PIC microcontrollers do not have instructions like PUSH 
or POP, and the stack can only store the program counter. The absence 
of a stack to store the content of registers while an interrupt is being ser-
viced makes it extremely difficult to nest interrupt service subroutines. 
Therefore, the interrupt system in this type of microcontroller is rela-
tively simple. If the microcontroller is servicing an interrupt request and 
receives another interrupt request, the new interrupt request must wait 
until the first one has finished before being serviced. This is intrinsically 
guaranteed in these types of microcontrollers because the global interrupt 
system is disabled while the microcontroller services an interrupt request. 



Interrupts	 195

The global interrupt system is only enabled with the instruction retfie that 
finishes the interrupt service subroutine.

Because the stack can only store the program counter, the contents of 
the W and STATUS registers must be stored in the data memory or in any 
other available location. This can be a complex task given the bank struc-
ture for data memory and the fact that most data transfer instructions 
alter some bits in the STATUS register. Example 7.3 illustrates several solu-
tions given by the manufacturer of the PIC microcontrollers.

Example 7.3

Recommended structure for an interrupt request subroutine. This subroutine 
uses registers TEM_W and TEMP_ST to store the contents of the W and STATUS 
registers. This operation seems easy to carry out with the following sequence:

		  movwf	TEMP_W
		  movf	 STATUS, W
		  movwf	TEMP_ST

However, this sequence is not valid because the instruction movf affects bit 
Z in the STATUS register, making the value stored in the register TEMP_ST dif-
ferent from the original STATUS. It is necessary to use instructions that do not 
affect any bits in the STATUS register. One of these is the instruction swapf. 
Using this instruction, the segment of program becomes:

		  movwf	TEMP_W
		  swapf	STATUS, W
		  movwf	TEMP_ST

This instruction stores the contents of the STATUS register in the TEMP_ST 
register without altering the original value of the bits. The instruction, how-
ever, swaps the nibbles in the register. Therefore, the nibbles in TEMP_ST must 
be swapped again before leaving the interrupt request subroutine in order to 
maintain the integrity of the STATUS register. The segment of program that 
restores the values of W and STATUS before the subroutine finishes is:

		  swapf	TEMP_ST, W
		  movwf	STATUS
		  swapf	TEMP_W, F
		  swapf	TEMP_W, W

It is also necessary to keep in mind that at least the TEMP_W register must be 
located in the bank that was active at the time of the interrupt. Because it is not 
possible to know what bank this is, there are several solutions depending on 
whether the microcontroller has a zone of RAM data memory that is common 
to all the banks. A common data memory zone is an area of memory that can 
be addressed from any bank with the same physical area in the data memory.



196	 Microcontrollers: Fundamentals and Applications with PIC

The following are the subroutines called SRAI1 and SRAI2 with the structure 
recommended by Microchip for interrupt request subroutines depending on 
whether the PIC has a common zone for data memory.

		  ; This subroutine is for PICs with common RAM zone such as  
		  ; PIC16F84:
		  ; Common RAM: An area of RAM that is the same in all banks.
		  ; TEMP_W and TEMP_ST are defined in this common RAM zone.
		  ;
		  SRAI1:
				    movwf		 TEMP_W		  ; Store W in TEMP_W.
				    swapf		 STATUS, W	 ; Swap the nibbles of STATUS
				    movwf		 TEMP_ST		  ; and store result in TEMP_ST.
		  ;
		  ; Write here the body of this subroutine:
		  ;
				    swapf		 TEMP_ST, W	; Retrieve TEMP_ST and swap nibbles
				    movwf		 STATUS		  ; store results in STATUS.
				    swapf		 TEMP_W, F	 ; Retrieve TEMP_W and store it in
				    swapf		 TEMP_W, W	 ; W without altering STATUS.
				    retfie					     ; Return to the interrupted program.
		  ;
		  ;
		  ; �This subroutine is for those PICs without common RAM, such as 

PIC16F873.
		  ; Common RAM: An area of RAM that is the same in all banks.
		  ; Register TEMP_W defined in any bank.
		  ; Register TEMP_ST defined in bank 0.
		  ;
		  SRAI2:
				    movwf		 TEMP_W		  ; Store W in TEMP_W.
				    swapf		 STATUS, W	 ; Swap nibbles in STATUS,
				    bcf		  STATUS, RP0	; Select bank 0
				    movwf		 TEMP_ST		  ; And store results in TEMP_ST.
		  ;
		  ; Write here body of subroutine
		  ;
				    swapf		 TEMP_ST, W	; Retrieve TEMP_ST and swap nibbles
				    movwf		 STATUS		  ; store it in STATUS. The bank selected
											           ; is now the original where TEMP_W is.
				    swapf		 TEMP_W, F	 ; Retrieve TEMP_W and store it in
				    swapf		 TEMP_W, W	 ; W without altering STATUS.
				    retfie					     ; Return from interrupt.
		  ;

Figure 7.10 illustrates the general structure for the interrupt service sub-
routine in PIC microcontrollers. After preserving the contents of the W 
and STATUS registers following one of the procedures shown in Example 
7.3, the programmer must find the source that generated the interrupt 
request. Once the interrupt source has been identified, it can be serviced. 
Identifying the source can be done by reading the different bit flags to 
find which one is set to 1. Afterward, it is important to reset this bit to 0. 
Finally, the original values must be restored in the W and STATUS reg-
isters and must return to the program that was interrupted by executing 
the instruction retfie. This instruction enables the global interrupt system 
(sets GIE = 1).



Interrupts	 197

The steps that take place in servicing an interrupt request in medium-
end PIC microcontrollers are:

	 1.	The microcontroller completes the execution of the current 
instruction.

	 2.	The value of the PC is stored in the stack.

	 3.	The PC is set to 0004, causing it to jump to this address, beginning 
the execution of the interrupt service subroutine.

	 4.	The values of the W and STATUS registers are stored (see exam-
ple 7.3).

	 5.	The interrupt source is determined by checking the appropriate 
bit flags.

	 6.	Once the source has been identified, its flag is set back to 0.

Interrupt
service

subroutine

Store W and STATUS

l1 = 1?

l2 = 1?

lN = 1?
l1 = 0

l2 = 0

lN = 0
Service interrupt

Service interrupt

Restore W and STATUS

Return

Service interrupt

yes

yes

yes

no

no

no

Figure 7.10 
Interrupt service subroutine structure for medium-end PIC microcontrollers. With N 
potential sources, the flags I1, I2, …, IN associated to these interrupts must be consulted. 
These indicators are the T0IF, INTF, etc., bits from the INTCON, PIR1, and PIR2 registers.



198	 Microcontrollers: Fundamentals and Applications with PIC

	 7.	The original values for the W and STATUS registers are restored 
(see Example 7.3).

	 8.	Using the instruction retfie, the microcontroller returns to the 
program that had been interrupted. This instruction retrieves the 
value of the PC from the stack and enables the global interrupt 
system (sets GIE = 1).

The first three steps are done automatically by the microcontroller, 
whereas steps 4 through 8 must be implemented within the interrupt ser-
vice subroutine.

7.3  Examples of Interrupt Applications

7.3.1 R eal-Time Clock

A time base is a set of variables whose values reflect the value of real-time 
in the microcontroller. For example, a time base may consist of the vari-
ables TICKS, SEC, MIN, and HOUR that count tenths of seconds, seconds, 
minutes, and hours. These variables are nothing more than registers in 
the microcontroller’s data memory. The real-time clock (RTC) is a soft-
ware mechanism based on periodic interrupts to actualize the time base 
and synchronize events. For example, with each periodic interrupt, the 
RTC program can increment the value of the variable TICKS and, depend-
ing on its value, actualize the rest of variables. The external events that are 
synchronized with the time base may be periodic. For example, periodic 
events can be to read one of the channels in the A/D converter every 5 s 
or store a value in port B every 8 s. Example 7.5 explains in further detail 
how these synchronizations are carried out.

The fundamental element in an RTC is the periodic interrupt that actu-
alizes the time base. The period T of this interrupt determines the time 
resolution for the system. For example, if T = 0.1 s, the system cannot dif-
ferentiate between events shorter than 0.1 s. Another important consider-
ation is that the execution of the program that services the interrupt to the 
RTC must use a very short processing time, thus not limiting the ability of 
the microcontroller to execute other tasks.

To design an RTC we can use the interrupt from one of the timers in 
the microcontroller. For example, Timer0 can be programmed to periodi-
cally request an interrupt (tick of the clock) each certain number of mil-
liseconds. This is done by using a variable (a variable that counts clock 
ticks) that increments or decrements with each interrupt. Other variables 
can be used to count seconds, minutes, hours, and so forth. The following 
example illustrates how to implement an RTC in the PIC16F873.



Interrupts	 199

Example 7.4

Real-time clock based on a PIC16F873 with a 4 MHz crystal. The example 
shows how to implement an RTC using a variable time base to count ticks, 
seconds, minutes, and hours.

If Timer0 is programmed with a count module N = 256 and the prescaler 
with a division factor of 32, Timer0 will generate an interrupt every 8.192 ms 
(122.07 Hz). To reach 1 s, it is necessary to count 122 interrupts (ticks) for the 
counter. The register SEC implements the counter for seconds, the register MIN 
implements the counter for minutes, and the register HOUR implements the 
counter for hours.

Figure 7.11 shows the algorithm for the RTC. Although it may seem that this 
algorithm takes a large amount of the microcontroller’s time, the reality is dif-
ferent because in the majority of the cases the algorithm follows the deci-
sion NO. From the 122 interrupts that occur every second, only one takes 
the path YES (decision block TICKS = 0?) and so on. Therefore, the algorithm 
uses a very short processing time. This is very desirable in an RTC. In the algo-
rithm shown in figure 7.11, the variable TICKS decrements while SEC, MIN, 
and HOUR increment. The reason for this different approach is to maximize 
the execution speed to take the least possible amount of the microcontroller’s 
time. Incrementing the variable TICKS and comparing its value with 122 would 
need more instructions than decrementing it and asking if its value is zero. 
Therefore, this is the fastest option.

The following is the code that implements the algorithm shown in 
figure 7.11:

		  ;
		  ; Real time clock
		  ; using Timer0 interrupt
		  ;
				    list			   p = 16f873
				    #include	<p16f873.inc>
		  ;
		  ; Variables of the time base:
		  ;
		  TICKS			  equ	 0x20				    ; Ticks counter.
		  SEC			   equ	 0x21				    ; Seconds counter.
		  MIN			   equ	 0x22				    ; Minutes counter.
		  HOUR			   equ	 0x23				    ; Hours counter.
		  ;
		  ; Other variables:
		  ;
		  TEMP_W 		  equ	 0x24
		  TEMP_ST 		 equ	 0x25
		  ;
			   org		  0
			   goto		  init
			   org		  4
			   goto		  rtc
		  ;
		  init:
			   clrf		  INTCON					     ; Disable all interrupts.
			   bsf		  STATUS, RP0				   ; Select bank 1.
			   movlw		 0xC4						      ; Prescaler with factor 32.
			   movwf		 OPTION_REG				   ; assigned to Timer0.



200	 Microcontrollers: Fundamentals and Applications with PIC

RTC

STATUS = TEMP_ST
W = TEMP_W

Return

no

no

no

no

yes

yes

yes

yes

(Each second)

(Each minute)

(Each hour)

(Each 24
hours)

SEC = 60?

SEC = 0
MIN = MIN + 1

MIN = 60?

MIN = 0
HOUR = HOUR + 1

HOUR = 24?

HOUR = 0

T0IF = 0
TICKS = TICKS – 1

TICKS = 0?

TICKS = 122
SEC = SEC + 1

TEMP_W = W
TEMP_ST = STATUS

Figure 7.11 
Block diagram with the algorithm for the real-time clock in example 7.4. The time base is 
made by the variables TICKS, SEC, MIN, and HOUR that count clock ticks, seconds, min-
utes, and hours. The algorithm is very fast because most of the times it takes the path “no” 
from the first decision branch. The algorithm is only fully executed (taking all the “yes” 
paths) for a single tick a day (just at midnight!).



Interrupts	 201

			   bcf		  STATUS, RP0				   ; Select bank 0.
			   movlw	.	 0							       ; Count module = 256.
			   movwf		 TMR0						      ; in Timer0.
			   movlw		 .122						      ; Number of ticks per second.
			   movwf		 TICKS						     ; in tick counter.
			   clrf		  SEC						      ; Seconds counter to 0.
			   clrf		  MIN						      ; Minutes counter to 0.
			   clrf		  HOUR						      ; Hour counter to 0.
			   bsf		  INTCON, T0IE			   ; Enable Timer0 interrupt.
			   bsf		  INTCON, GIE				   ; Enable global interrupts.
		  ;
		  prog:										         ; Main program here.
			   nop
			   goto		  prog						      ; Infinite loop.
		  ;
		  rtc:
			   movwf		 TEMP_W					     ; Store W in TEMP_W.
			   swapf		 STATUS, W				    ; Swap STATUS nibbles,
			   bcf		  STATUS, RP0				   ; select bank 0
			   movwf		 TEMP_ST					     ; and store result in TEMP_ST.
													             ;
			   bcf		  INTCON, T0IF			   ; Set to 0 overflow flag for  
													             ; Timer0.
			   decfsz	 TICKS, f					    ; Reached a second?
			   goto		  end_rtc					     ; No, leave interrupt.
		  rtc_sec:									        ; Yes, second reached.
			   movlw		 .122						      ; Reload variable TICKS
			   movwf		 TICKS						     ; to initial value and
			   incf		  SEC, f					     ; increment seconds.
			   movf		  SEC, W
			   xorlw		 .60						      ; SEC = 60?
			   btfsc		 STATUS, Z				    ;
			   goto		  end_rtc					     ; No, return.
		  rtc_min:									        ; Yes, one minute reached.
			   clrf		  SEC						      ; Set seconds to 0 and
			   incf		  MIN, f					     ; increment minutes.
			   movf		  MIN, W
			   xorlw	.	 60							      ; MIN = 60?
			   btfsc		 STATUS, Z				    ;
			   goto		  end_rtc					     ; No, return.
		  rtc_hour:								        ; Yes. One hour reached.
			   clrf		  MIN						      ; Set minutes to 0 and
			   incf		  HOUR, f					     ; increment hours.
			   movf		  HOUR, W
			   xorlw		 .24						      ; HOUR = 24?
			   btfsc		 STATUS, Z				    ;
			   goto		  end_rtc					     ; No, return.
		  rtc_day:									        ; Yes. 24 hours elapsed.
			   clrf		  HOUR						      ; Set hours to 0.
		  end_rtc:
			   swapf		 TEMP_ST, W				   ; Retrieve TEMP_ST and swap nibbles
			   movwf		 STATUS					     ; stored in STATUS. The bank  
													             ; selected
													             ; is now the original where  
													             ; TEMP_W is.
			   swapf		 TEMP_W, f				    ; Retrieve TEMP_W and store it in
			   swapf		 TEMP_W, W				    ; W without altering STATUS.
			   retfie								        ; Return to interrupted program.
													             ;
			   end									         ; End of source code.



202	 Microcontrollers: Fundamentals and Applications with PIC

7.3.2  Synchronization of Events to Real-Time Clock

An RTC with a time base that counts fractions of seconds, seconds, min-
utes, and so forth allows us to synchronize several events with this time 
base. With this, each event occurs periodically at the same or different 
time intervals. Figure 7.12 illustrates, using a specific case, how to proceed 
in general to synchronize events with a time base built on an RTC. In 
this case, there are two events called EVENT1 and EVENT2 that must be 
executed periodically at 3 s and 5 s each. The procedure to achieve this is 
described next.

The RTC program must have as many variables as events needed to be 
synchronized. Each one of these variables sets the repetition time for the 
event. In this example, the events need to be executed each 3 s and 5 s. 
Therefore, the RTC program must have two variables that are incremented 
every second until they reach 3 s and 5 s, respectively. In Figure 7.12, these 
variables are called SEC3 and SEC5. The RTC program must also have one 
flag for each event to be synchronized. These flags are set to 1 when the 
time to execute the event has been reached. These flags can be bits in any 
of the microcontroller registers. The example shown in Figure 7.12 uses 
bits 0 and 1 of a register called FLAGS.

The main program periodically checks the status of these flags. If it 
finds any of them at 1, it means that the event must be executed. This can 
be done by calling the subroutine that implements the appropriate action. 
After the event has been executed, the flag needs to be set back to 0. From 
a programming point of view, these flags are global variables because 
they must be accessed by both the main program and the program to 
service the interrupt.

Example 7.5

Synchronizing two events to a time base. Using a PIC16F873 with a 4 MHz 
crystal, implement an RTC, a time base, and execute two events associated 
with the time base:

	 1.	The value at pin RB0 must alternate between 0 and 1 every 3 s.
	 2.	The value at pin RB1 must alternate between 0 and 1 every 5 s.

The solution to this problem follows the algorithm shown in figure 7.12. Using 
the 4 MHz clock, programming Timer0 with a count module of N = 256 and 
using a division factor of P = 32 for the prescaler, the interrupt to Timer0 will 
occur every 8.192 ms (122.07 Hz). To reach 1 s it is necessary to count 122 
interrupts (ticks) in the counter. The program uses a register (TICKS) to count 
them. Registers SEC3 and SEC5 are used to implement counters from 0 to 3 s 
and from 0 to 5 s. To indicate that 3 s or 5 s have been reached, the program 
uses bit 0 and bit 1 from the FLAGS register (FLAGS<0>, FLAGS <1>). These 



Interrupts	 203

bits are set to 1 every 3 s and 5 s. The main program checks their value and sets 
back to 0 when the event occurs.

The program code is shown below:

		  ;
		  ; Real time clock using Timer0 interrupt.
		  ; This time base synchronizes events EVENT1 and EVENT2,
		  ; each 3 and 5 seconds.

RTC

TEMP_W = W
TEMP_ST = STATUS

T0IF = 0
TICKS = TICKS – 1

TICKS = 0?

TICKS = 122
SEC3 = SEC3 + 1
SEC5 = SEC5 + 1

SEC3 = 3?

SEC5 = 5?

no

no

yes (Every 3
seconds)

yes (Every 3
seconds)

no

yes (second)

Main program

System initialize

FLAGS<0> = 1?

FLAGS<1> = 0
Call EVENT2

FLAGS<0> = 0
Call EVENT1

FLAGS<1> = 1?

Other tasks

(b)(a)

yes

no

yes

no

Other RTC blocks

STATUS = TEMP_ST
W = TEMP_W

Return

SEC3 = 0
FLAGS<0> = 1

SEC5 = 0
FLAGS<1> = 1

Figure 7.12 
Synchronization of events to RTC. EVENT1 and EVENT2 are executed every 3 s and 5 s. 
(a) Block diagram for the RTC with the counters SEC3 and SEC5 that increment every sec-
ond until they reach 3 s and 5 s, respectively. Bits 0 and 1 in the FLAGS register indicate 
the occurrence of these times. (b) Block diagram for the main program that continuously 
checks the value of the time flags in order to execute the appropriate events. The flag bits 
are set to 1 by the RTC and set to 0 by the main program.



204	 Microcontrollers: Fundamentals and Applications with PIC

			   ;
			   list			   p = 16f873
			   #include	<p16f873.inc>
		  TICKS			  equ	 0x20				    ; Ticks counter.
		  SEC3			   equ		 0x21				    ; Counter of seconds up to 3.
		  SEC5			   equ	 0x22				    ; Counter for seconds up to 5.
		  FLAGS			  equ	 0x23				    ; Event flags in bits 0 and 1.
		  TEMP_W		  equ	 0x24
		  TEMP_ST		  equ	 0x25
			   org				    0
			   goto 				   init
			   org				    4
			   goto				    rtc
		  init:
			   clrf				    PORTB
			   clrf				    INTCON			   ; Disable interrupts.
			   bsf				    STATUS, RP0		 ; Select bank 0.
			   movlw				   0xC4				    ; Prescaler, value 32 assigned
			   movwf				   OPTION_REG		 ; to Timer0.
			   clrf				    TRISB				   ; Port B output port.
			   bcf				    STATUS, RP0		 ; Select bank 0.
			   movlw				   .0					    ; Count module = 256
			   movwf				   TMR0				    ; in Timer0.
			   movlw				   .122				    ; Number of ticks per second.
			   movwf				   TICKS				   ;
			   clrf				    SEC3				    ; SEC3 counter to 0.
			   clrf				    SEC5				    ; SEC5 counter to 0.
			   clrf				    FLAGS				   ; Flag events to 0.
			   bsf				    INTCON, T0IE	 ; Enable Timer0 interrupt.
			   bsf				    INTCON, GIE		 ; Enable global interrupt system.
		  prog:
			   btfsc				   FLAGS, 0			  ; FLAGS<0> = 0?
			   call				    even1				   ; No, carry out event 1.
			   btfsc				   FLAGS, 1			  ; FLAGS<1> = 0?
			   call				    even2				   ; No, carry out event 2.
			   goto				    prog
		  event1:
			   bcf				    FLAGS, 0			  ; Set FLAGS<0> to 0
			   btfsc				   PORTB, 0			  ;	  PORTB<0> = 0?
			   goto				    event1_set0		 ; No. It is 1. Set it to 0.
		  event1_set1: 							       ; Yes. It is 0. Set it to 1.
			   bsf				    PORTB, 0
			   return
		  event1_set0:							       ; Set to 0.
			   bcf				    PORTB, 0
			   return
		  event2:
			   bcf				    FLAGS, 1			  ; Set FLAGS<1> to 0.
			   btfsc				   PORTB, 1			  ; PORTB<0> = 0?
			   goto				    event1_set0		 ; No. It is 1. Set it to 0.
		  event2_set1: 							      ; Yes. It is 0. Set it to 1
			   bsf				    PORTB, 1
			   return
		  event2_set0:								        ; Set to 0.
			   bcf				    PORTB, 1
			   return
		  rtc:
			   movwf				   TEMP_W			   ; Store W in TEMP_W.
			   swapf				   STATUS, W		  ; Swap STATUS nibbles,
			   bcf				    STATUS, RP0		 ; select bank 0
			   movwf				   TEMP_ST			   ; and store result in TEMP_ST.
													             ;



Interrupts	 205

			   bcf				    INTCON, T0IF	 ; Clear Timer0 flag?
			   decfsz			   TICKS, f			  ; Reached one second?
			   goto				    end_rtc			   ; No. Leave interrupt.
													             ;
		  rtc_sec:
			   movlw				   .122				    ; Yes. Reload value of TICKS.
			   movwf				   TICKS				   ; with number of ticks per 
second.
			   incf				    SEC3, f			   ; Increment 3 s counter.
			   incf				    SEC5, f			   ; Increment 5 s counter.
													             ;
			   movf				    SEC3, w
			   xorlw				   .3					    ; SEC3 = 3?
			   btfsc				   STATUS, Z		  ;
			   goto				    rtc_sec1			  ; No. Continue.
			   clrf				    SEC3				    ; Yes. 3 s elapsed: Set SEC3 to 0,
			   bsf				    FLAGS, 0			  ; set to 1 flag FLAGS<0>
													             ; and continue.
		  rtc_sec1:
			   movf				    SEC5, w
			   xorlw				   .5					    ; SEC5 = 5?
			   btfsc				   STATUS, Z		  ;
			   goto				    end_rtc			   ; No. Continue.
			   clrf				    SEC5				    ; Yes. 5 s elapsed: Set SEC5 to 0,
			   bsf				    FLAGS, 1			  ; set to 1 flag FLAGS<1>
													             ; and continue.
		  end_rtc:
			   swapf				   TEMP_ST, W		 ; Retrieve TEMP_S and swap nibbles
			   movwf				   STATUS			   ; store in STATUS. The selected bank
													             ; is now the original where 
TEMP_W is.
			   swapf				   TEMP_W, F		  ; Retrieve TEMP_W and store it in
			   swapf				   TEMP_W, W		  ; W without altering STATUS.
			   retfie								        ; Return to interrupted program.
			   end

7.3.3  Protection against Hardware Malfunctions

In programs that must wait for signals coming from hardware external 
to the microcontroller, it is useful to build some level of protection to 
avoid the software falling into an infinite loop in case the communica-
tion between the microcontroller and the external hardware fails. In these 
situations, it is a good design idea to limit the waiting time to a reasonable 
value. This maximum waiting time is known as the time-out.

Let’s assume a situation in which a peripheral needs to be serviced and 
the need for service comes from a signal external to the microcontroller. 
If the hardware were always working correctly, the algorithm shown in 
Figure 7.13a would be enough to service the peripheral. However, if there 
is an error in the external hardware, the waiting time in this algorithm 
would be infinity, a situation totally unacceptable.

A solution to limit this waiting time is to use a variable in the RTC that 
counts the waiting time that has elapsed. The peripheral service program 
must break the loop when this variable reaches a preset value that cor-
responds to the maximum waiting time decided by the programmer. 



206	 Microcontrollers: Fundamentals and Applications with PIC

Figures 7.13b and 7.13c illustrate this solution. The peripheral service pro-
gram (Figure 7.13b), just before starting the waiting loop, activates a con-
trol variable (bit i in FLAGS register). This indicates to the RTC that it must 
start counting the waiting time. This waiting time is stored in the variable 
AUX. In other words, AUX counts the waiting time only if the control 
variable is active. The block shown in Figure 7.13c must be inserted in the 
RTC so AUX increments at every clock tick, or at every second, or at every 
unit of time decided by the programmer. When the variable AUX reaches 
the value N that corresponds to the maximum waiting time, this means 
that there is a hardware malfunction. The program interrupts the waiting 
loop and can send an error message informing of the error.

Peripheral ready?

Peripheral ready?

Service peripheral Service peripheral

Error message

FLAGS<i> = 1

FLAGS<i> = 0

FLAGS<i> = 1?

AUX = AUX + 1

(c)(b)(a)

AUX = N?
yes

yes

yes

yes
no

no

no
no

Figure 7.13 
Protection against hardware errors when servicing peripherals. If servicing a peripheral, it 
is necessary to wait for an external signal. The algorithm shown in (a) has the risk of an infi-
nite time look. The algorithm shown in (b) limits the waiting time using the variable AUX. 
If AUX reaches the value N that corresponds to the maximum waiting time, this means 
that there is a hardware error and an error message is displayed. (c) Shows the section of 
the RTC in which AUX is incremented. AUX must only be incremented if the program has 
entered the loop to wait for the peripheral. This is indicated to the RTC by bit FLAGS<i>. 
The place to code the section shown in (c) within the RTC depends on when the variable 
AUX is incremented.



207

8
Serial Input and Output

This chapter focuses on serial input and output in microcontrollers. It 
starts by explaining the basic concepts regarding serial transmission of 
information, formats used, parameters needed, and interfaces. The chap-
ter continues by describing the serial ports available in medium-end PIC 
microcontrollers and finishes by giving examples of programs for serial 
data transmission.

8.1  Basic Concepts

8.1.1 I ntroduction to Serial Data Transmission

Serial transmission of binary data consists of sending the bits of a word 
one by one in a consecutive form and using the same pins. For example, 
the 8-bit word B2h = 10110010b can be seen and transmitted as a data sig-
nal in which the bit 0 is represented by a low voltage level (VL) and the bit 
1 is represented by a high voltage level (VH). This data signal can be gener-
ated in synchrony with a clock signal whose period determines the length 
of a bit, as shown in figure 8.1.

The data signal is characterized by its transmission velocity (vT), which is 
defined as the inverse of the duration of a bit. If each bit lasts τ seconds, 
the transmission velocity is

	
vT bit/s=

1
τ

.	 (8.1)

For the transmitted information to be correctly interpreted by the 
receiver, there has to be some form of synchronization between transmitter 
and receiver. For short-distance transmission, the clock signal can be sent 
with the data signal in order to synchronize. This type of communication 
is called synchronous communication. However, sending the clock signal 
with the data signal is not a viable solution for long-distance transmission 
due to the additional costs involved in sending this additional signal that 
does not contain information. Although the clock signal is not present in 
the receiver, the receiver must know, nevertheless, the duration of each bit 



208	 Microcontrollers: Fundamentals and Applications with PIC

and the moment at which the transmission starts. Knowing the duration 
of each bit can be accomplished by building a clock at the same frequency 
in both the receiver and transmitter. Knowing when the transmission 
starts can be accomplished in two different ways. The first method is by 
marking in some way the beginning of a new word; the second method is 
by marking the beginning of each block of words. These two approaches 
are known as asynchronous communication and synchronous communi-
cation, respectively. When using asynchronous communication, the syn-
chronization between the transmitter and receiver is done word by word. 
When using synchronous communication, the synchronization is done at 
each block of words. Both of these approaches introduce a certain amount 
of redundant information in the data transmitted in order to establish the 
necessary synchronization between transmitter and receiver.

The term synchronous communication is used to identify both data trans-
mission in which the clock signal is sent with the data signal, as well as 
data transmission without sending the clock signal but synchronizing 
with each block of words. On the other hand, the term asynchronous com-
munication is used only for data transmission in which the synchroniza-
tion is done word by word.

The transmitter and receiver must coordinate using a communication pro-
tocol. This is a set of rules agreed upon by the transmitter and the receiver 
to ensure the correct transmission of data. There are two main types of 
communication protocols:

Byte-oriented protocols in which all the transmitted words have •	
8 bits. An example of a byte-oriented protocol is the IBM Binary 
Synchronous Communication (BISYNC) Protocol.

Bit-oriented protocols in which the blocks of transmitted data do •	
not necessary have to have 8 bits. That is, the transmitted data 
can be seen as sets of bits rather than sets of bytes. Examples of 

Voltage

Voltage (a)

(b)

1 1 0 0 1 01 0

τ 2τ 3τ 4τ 5τ 6τ 7τ 8τ

τ 2τ 3τ 4τ 5τ 6τ 7τ 8τ

Time

Time

VH
VL

VH
VL

Figure 8.1 
Serial transmission of a byte. (a) Clock signal. (b) Data signal. Each bit, represented by a 
high (VH) or low voltage (VL), is sequentially transmitted.



Serial Input and Output	 209

bit-oriented protocols are high-level data link control (HDLC), 
synchronous data link control (SDLC), and carrier sense, multiple 
access with collision detection (CSMA/CD), widely used in local 
computer networks that follow the IEEE 802.3 protocol: Ethernet 
Network Standard.

8.1.2  Asynchronous Communication

Asynchronous communication is characterized by introducing a synchro-
nization element in each transmitted data. This synchronization element 
consists of an additional bit with the value 0 to indicate the beginning of 
each word and a bit with the value 1 to indicate the end of the word. The 
initial 0 bit is called the start or space bit, while the final 1 bit is called the 
stop or mark bit. When the transmitter pauses because it does not have 
words to transmit, it keeps a sequence of stop bits in its output; that is, 
it keeps the output at 1. Figure 8.2 shows the format of an asynchronous 
signal where it can be seen how the synchronization occurs with each 
data transmitted.

8.1.3  Synchronous Communication

Synchronous communication without transmitting the clock signal means 
data synchronization is at blocks of words instead of the individual word 
synchronization used by asynchronous communication. Here, in order to 
start the transmission of a data block, the transmitter introduces a syn-
chronization element that can be a unique word or a unique bit pattern. 
When the transmitter finishes sending the data block and does not have 
more data to send, there is a pause in which the transmitter needs to keep 
the line in a predetermined state, generally at 1. Figure 8.3 illustrates the 
general signal format for synchronous communication.

The synchronization element, commonly called FLAG, is a unique 
sequence of bits that is not repeated during the data transmission. This 
element must start with a 0 bit for the receiver to determine that the pause 
has ended. The word 7Eh (01111110), containing a sequence of 6 bits at 1, 
is commonly used for this purpose. To differentiate this control sequence 

5, 6, 7 or 8-bit data 5, 6, 7 or 8-bit data

Start pulseStart pulse Stop pulse

0 01 1 1 10/1 0/10/1 0/10/10/1 0/10/1 0/10/1 0/1 0/1 0/10/1 0/10/1

Pause. No data to
transmit.

Figure 8.2 
Signal format for asynchronous transmission. Start pulse always lasts 1 bit. Stop pulse can 
last 1, 1½, or 2 bits.



210	 Microcontrollers: Fundamentals and Applications with PIC

from data with the same bits, the transmitter adds an additional 0 to any 
sequence of 5 bits at 1. At the end, the receiver removes the additional 0, 
thus recovering the initial bit sequence.

When using asynchronous communication in which the synchronization 
is done character by character using the start and stop bits, it is necessary to 
transmit 10 bits for each 8 bits of information. Therefore, 20% of the trans-
mission time is lost by the synchronization. Synchronous communication 
uses its communication time more efficiently because, after the transmitter 
and receiver are synchronized, they only transmit/receive data.

8.1.4  Connection between Equipment: RS-232C Interface

Establishing long-distance communication requires the participation of 
several pieces of equipment:

Data terminal equipment (DTE). This is the equipment that pro-•	
duces or receives the data signal.
Data communication equipment (DCE). This is the equipment •	
used to condition the data signal to the transmission medium, or 
the equipment that receives this data signal from the transmis-
sion medium and prepares it for the receiver.

The personal computer is a very common DTE that can generate an 
asynchronous data signal. When this signal needs to be transmitted to 
another computer using a telephone channel as the transmission media, it 
is then necessary to use an additional piece of equipment (DCE) to condi-
tion the data signal to the telephone channel. The reverse process needs 
to be done on the receiver side. This DCE is called a modem (modulator–
demodulator). Figure 8.4 shows the basic block diagram for this form of 
data communication.

The connection between DTE and DCE has been normalized since the 
1960s by the CCITT that now is part of the International Telecommunication 
Union (ITU). One of the most common standards for asynchronous com-
munication using low speeds is known as RS-232C (Recommended 
Standard 232, Revision C). This standard was first developed by the 
Electronics Industries Alliance (EIA) to connect data equipment short 

0 01 1 1 11 1

FLAG Data FLAG Data

Figure 8.3 
Signal format for synchronous transmission. Synchronization occurs at the beginning of 
each data block. Each block consists of a sequence of words (bytes) or simply a set of N 
bits.



Serial Input and Output	 211

distances in a noisy environment. This interface is so common that until 
very recently all personal computers had a serial RS-232C interface and 
its connector. Since approximately 2004, personal computers with a single 
serial port now use a universal serial bus (USB) interface.

The signals involved in the RS-232C standard use negative logic:

Logic level 0: Voltage up to +25 V with no load. Voltage between •	
+3 V and + 15 V with load.

Logic level 1: Voltage up to –25 V with no load. Voltage between •	
–3V and –15 V with load.

Table 8.1 shows the most commonly used signals used in the RS-232C 
interface.

The connection of equipment using the RS-232C interface uses the 
connections shown in Figure 8.5. The connection between a DTE (e.g., a 
personal computer) and a DCE (e.g., a modem) follows the configuration 
shown in Figure 8.5a. The scheme shown in Figure 8.5b is used to connect 
two DTEs to each other, for example, a computer with another computer 
or a printer. It is important to realize how these connections differ from 
each other. The connection shown in Figure 8.5b is called a null modem,  

DTE DTEDCE DCE
Communication channel

(Computer) (Computer)(Modem)(Modem)
( Telephone line, equipment

in the line, etc.)

Figure 8.4 
Simplified block diagram representing a communication system. The data terminal equip-
ment (DTE) can be a computer and the data communication equipment (DCE) can be a 
modem. The communication channel can have other DCEs.

T×D
3
2

6
20

4

8

5

3
2

6
20

4

8

5

3
2

6
20

4

8

5

3
2

6
20

4

8

5

R×D

DTR#

SG
DTE DCE DTE

(a) (b)
DTE

DSR#

RTS#
CTS#

CD#

T×D
R×D

DTR#

SG

DSR#

RTS#
CTS#

CD#

T×D
R×D

DTR#

SG

DSR#

RTS#
CTS#

CD#

T×D
R×D

DTR#

SG

DSR#

RTS#
CTS#

CD#

Figure 8.5 
Equipment connection using the RS-232C interface. (a) Connection between a DTE and a 
DCE. (b) Null modem connection between two DTEs.



212	 Microcontrollers: Fundamentals and Applications with PIC

although this name is commonly used for any configuration different 
from the one shown in figure 8.5a.

8.1.5  The I2C Bus

The inter-integrated circuit (I2C) bus was developed by Philips to intercon-
nect integrated circuits on the same printed circuit board using only three 
lines. This bus has become a standard for the interconnection and syn-
chronous serial data communication between different devices located at 
short distances: microcontrollers, memories, D/A and A/D converters, and 
so forth. In addition to the ground line, this bus only uses two additional 

Table 8.1

Signals Involved in the RS-232C Interface

Connector
Name of Signal

Direction of Signal

25D 9D From DCE To DCE

1 Protective ground (GND)

2 3 Transmitted data (TxD) X

3 2 Received data (RxD) X

4 7 Request to send (RTS) X

5 8 Clear to send (CTS) X

6 6 Data set ready (DSR) X

7 5 Signal ground (SG)

8 1 Rcvd line signal detect (data carrier 
detect: DCD)

X

9 —

10 —

11 Select standby X

12 —

13 —

14 —

15 Transmit signal element timing X

16 —

17 Receiver signal element timing X

18 Test X

19 —

20 4 Data terminal ready (DTR) X

21 —

22 9 Ring indicator (RI) X

23 Speed select X

24 —

25 —

Note: 	 Data signals are RxD and TxD. The rest of the signals have control functions.



Serial Input and Output	 213

lines: one for data transfer, serial data line (SDA); and one for the clock 
signal, serial clock line (SCL). This bus can achieve transmission velocities 
of up to 100 kbits/s in its low-speed mode, 400 kbits/s in fast mode, and 3.4 
Mbits/s in high-speed mode. Figure 8.6 shows several devices connected 
using the I2C bus.

One of the devices in this type of communication acts as a master, while 
the rest of the devices act as slaves. Both masters and slaves can be trans-
mitters or receivers. The device acting as master initiates the communica-
tion, generates the clock signal, and ends the communication. The I2C bus 
is a multimaster bus meaning that there can be several masters connected 
to the bus, although there is a single master at any given moment. Each 
device has a unique address that identifies it during the communication. 
The addresses can have 7 or 10 bits.

Figure  8.7 illustrates the circuits that connect the devices to the I2C 
bus. Output circuits are open-drain or open-collector. Each bus line has 

SDA
SCL

Device 1 Device 2 Device N

Figure 8.6 
Device connection using the I2C bus. SDA is the data line and SCL is the clock line. The 
devices connected can be microcontrollers, memories, displays, and so forth. Each device is 
identified by its address. In any given moment, one of the devices acts as a master and the 
others as slaves. The clock signal is generated by the master, which can be transmitter or 
receiver. The data signal is generated by the transmitter, which can be a master or a slave. 
The figure does not show the ground connection for each device.

VDD

RR

Clock Data

O: Output
I: Input

Device with I2C interface Device with I2C interface

O

I I I I

O O O

Clock

SDA
SCL

Data

Figure 8.7 
Inputs and outputs for devices connected to an I2C bus. Each line bus is bidirectional. The 
open-drain outputs and the pull-up resistors R allow a wired AND in the bus. When an 
output transistor saturates, it sets the line to 0.



214	 Microcontrollers: Fundamentals and Applications with PIC

a pull-up resistance to create the logic function AND among all the lines 
connected to the bus. For a bus line to be set to 1, all output transistors 
must be off. However, when one single output transistor saturates, it sets 
the line to 0. This makes this device dominate the bus line. The I2C bus is 
bidirectional, meaning that each line can be an input or an output.

The SDA lines in the bus transfer data and the device addresses. All the 
information is organized in 8-bit words. Each time that the transmission 
of a byte through the SDA line is completed, the receiver must respond 
with an acknowledgment bit (A). This bit is a 0 set by the same SDA line 
during the following clock pulse in SCL, as shown in figure 8.8. To allow 
the receiver to insert the acknowledgment bit A, the transmitter frees the 
SDA line after transmitting the last bit and waits for the bit A = 0 in SDA 
before continuing with the transmission of a new byte.

As seen in figure 8.8, each SDA bit is transferred synchronized with the 
clock signal SCL. When the clock signal is at 1, the bit in the SDA line must 
be in a stable state. Changes in the SDA line can only occur when the SCL 
clock signal is at 0.

The communication between two or more devices in the I2C bus 
is always initiated and finished by the device acting as master. The 
communication begins when the master device generates the starting 
condition and ends when it generates the condition for stopping. Both 
conditions are identified by data transition in the SDA line while the 
clock signal is at 1, as shown in figure 8.9. The starting condition is iden-
tified by a transition from 1 to 0 in the SDA line when SCL is at 1. The 
stopping condition is identified by a transition from 0 to 1 in the SDA 
line when SCL is at 1.

Once the master generates the starting condition, it stores in the SDA 
line the address of the slave with which it desires to establish communica-
tion. From this moment, the master indicates that it will receive or trans-
mit data with the bit R/W# that is transmitted at the end of the address. 
When R/W# = 0, the master is a transmitter; when R/W# = 1, the master is 

8-bit data set by the transmitter

SDA

SCL

Bit 7 Bit 6 Bit 0 0

98

A

21

Acknowledgement bit (0)
set by the receiver

Figure 8.8 
Data and address transfer in the I2C is organized in 8-bit words. Each word sent by the 
transmitter has an acknowledgment bit set by the receiver in the SDA line during the ninth 
clock pulse in the SCL line. Each bit in SDA must be stable when the clock pulse is 1 and can 
only change when the clock is at 0.



Serial Input and Output	 215

a receiver. Data transfer starts after this information is sent, always with 
the acknowledgment bit from the receiver. Figure 8.10 illustrates the com-
munication format using the I2C bus in three possible scenarios: (a) the 
master acting as transmitter sends data to the slave acting as a receiver; (b) 
the master acting as a receiver receives data from a slave transmitter; and 
(c) a master that was initially a transmitter becomes a receiver. To move 
from transmitter to receiver, the master repeats the starting condition (S) 
and sends the slave address setting the bit R/W# to the appropriate value. 
Independently of the master being transmitter or receiver, the address is 
always set by the master. It is also the master that always initiates and 
terminates the communication.

The initial version of the I2C bus used 7-bit addresses allowing the 
connection of up to 128 devices. Further versions of the bus use 10-bit 
addresses, allowing a higher number of connected devices. These new 

SDA

SCL
S P

Stop
condition

Start
condition

Transferred information

Figure 8.9 
Start (S) and stop (P) conditions used by the master device to initialize and finish 
communication.

7 bits 8 bits

(a) S DataData

Data

Data

Data

Data

0

0

Information set by the master device
Information set by the slave device

P

P

P

1

1

Slave address

Slave address

Slave address

Slave address

S

S

S

A

A A

A

A

A

A

A

A

(b)

(c)

R/W#

Figure 8.10 
Communication format in three possible situations. (a) The master transmitter writes data 
in the slave receiver. (b) The master receiver receives data from the slave transmitter. (c) The 
master is initially a transmitter (R/W# = 0) and then becomes a master receiver, repeating the 
starting condition and sending the slave address by setting bit R/W# to 1.



216	 Microcontrollers: Fundamentals and Applications with PIC

versions can also understand 7-bit addresses. Figure  8.11 illustrates the 
general format of these addresses.

In general, 7-bit addresses are given in a single byte, except when the 
master carries out a general call. A general call is a call of attention to all 
the devices of the bus. It is followed by some information that specifies 
the objective of the call. Two bytes are used. The master first emits a byte 
“0” followed by a second byte that specifies the objective of the call. The 
actions that can be carried out are classified according to the value of the 
least significant bit of the second byte (bit B).

As shown in figure 8.11, not all possible addresses are available to be 
used by the devices connected to the I2C bus. Seven-bit addresses 78h to 
7Bh (in binary: 11110XX) cannot be used to identify any device because 
these represent the first byte in a 10-bit address. There are also several 
addresses reserved for further developments. These details for the I2C bus 
are described in the specifications published by Philips (www.nxp.com).

8.2  The USART Serial Port in PIC Microcontrollers

Medium-end PIC microcontrollers have a serial communications port 
called the universal synchronous asynchronous receiver transmitter 
(USART) or serial communication interface (SCI). This port can be con-
figured to establish a simultaneous asynchronous bidirectional commu-
nication (full duplex) or nonsimultaneous synchronous (transmitting the 
clock signal) bidirectional communication (half duplex).

(a)

Information set by the master
Information set by the slave

P

P

P1 1 1 1 0

0 0 0 0 0 0 0 0

S

S

S

Slave address

Slave address

X X X X X X X B

A6

Byte

First byte

First byte

Second byte

Second byte

A

A

A

A

A

A5

A9 A8

A4 A3 A2 A1 A0

A6A7 A5 A4 A3 A2 A1 A0(b)

(c)

R/W#

R/W#

Figure 8.11 
Addresses of devices connected to the I2C bus can be: (a) 7 bits or (b) 10 bits. (c) General call 
format.



Serial Input and Output	 217

8.2.1 G eneral Description

The USART serial port uses the TX/CK and RX/DT pins from the micro-
controller, which normally share functions with two pins in the parallel 
port C. In asynchronous mode, TX/CK is the pin that the transmitter uses 
to transmit data and RX/DT is the receiver pin for data input. In syn-
chronous mode, TX/CK is the pin to output the clock signal if the device 
has been configured as a master, or the pin for the input clock signal if it 
has been configured as a slave. RX/DT is the bidirectional pin for data 
signal. Figure  8.12 shows the use of these terminals between two PIC 
microcontrollers.

The USART serial port uses two special function registers, TXREG and 
RCREG, which are used to store the data to be transmitted or the data 
received. The USART serial port also uses the registers TXSTA and RCSTA 
to control the port, and the register SPBRG to establish the communication 
speed. It also uses some bits from the PIE and PIR registers for control 
purposes and to notify of interrupt requests.

8.2.2  Asynchronous Mode

The USART serial port in asynchronous mode allows simultaneous bidi-
rectional data communication (full duplex). This means that during the 
communication between two USART devices in asynchronous mode (fig-
ure 8.12a), each device can transmit and receive data at the same time. The 
transmitted or received signal consists of 8 bits preceded by the start bit 
(0) and followed by the stop bit (1). It is also possible to program the port 
to transmit or receive a ninth data bit as shown in Figure 8.13b.

The serial port has special function registers to manipulate the data to 
be transmitted or received. These are the TXREG and RCREG registers. 
TXREG is the register to store the data to be transmitted through the TX 
pin. RCREG is the register that stores the data received by the RX pin. 

TX
RX

(a)
(Master) (Slave)

(b)

CK
DT

PIC # 1

TX
RX

PIC # 2 PIC # 1

CK
DT

PIC # 2

Figure 8.12 
Pins TX/CK and RX/DT used by the USART serial port. (a) Connection between two PICs 
in asynchronous mode. TX and RX are data pins that transmit and receive, respectively. 
The clock signal is not transmitted. (b) Synchronous mode connection. CK is the clock pin: 
output in the master device and input in the slave device. DT is the data pin: output in the 
transmitter and input in the receiver.



218	 Microcontrollers: Fundamentals and Applications with PIC

These registers do not include the ninth bit if it exists. Figure 8.14 shows 
the schematic of the USART serial port transmitter. In asynchronous mode 
and transmission, once the TXREG is empty because the data has been 
moved to the TSR shift register as it is being transmitted, the bit TXIF in the 
PIR register is set to 1. This indicates that the port is ready to transmit new 
data that must be stored in TXREG. If the transmission interrupt is enabled 
(TXIE = 1 in PIE register), when TXIF = 1 it generates an interrupt request. 
The bit TXIF is automatically set to 0 when new data is loaded in TXREG.

Figure 8.15 shows the schematic of the USART serial port receiver. In 
asynchronous mode and reception, the data received by the pin RX is 
sampled at a frequency 64 times higher than the clock frequency and is 
temporarily placed in the RSR shift register before being stored in RCREG. 
The RCREG register may be read by the program. In reality, there are two 
registers to store data organized with a FIFO (first in, first out) structure. 
This means that while data is being received in the RSR register, there 

Interrupt
request TXIE

TXEN

Data Bus

TXREG register

TSR register

7

9th, bit TX9

TX9D

Output
control

TRMT SPEN

Pin
TX/CK08

(8)

(8)

SPBRG register

Clock generator

TXIF

Figure 8.14 
Transmitter in the USART serial port.

0 1

19th
bit

D0 D1 D2 D3 D4 D5 D6 D7

0 D0 D1 D2 D3 D4 D5 D6 D7

(a)

(b)

Figure 8.13 
Format of the asynchronous signal in the serial port in medium-end PICs. (a) Data signal. 
(b) Data signal with the additional ninth bit.



Serial Input and Output	 219

can be two additional data in the RCREG register waiting to be read by 
the program. When the RCREG register contains data, the bit RCIF in the 
PIR register is set to 1. This indicates that data has been received. If the bit 
RCIE in the PIE register is set to 1, it generates an interrupt request. The bit 
RCIF is set to 0 when the RCREG register does not contain data.

The control of transmission and reception is established with the TXSTA 
and RCSTA registers, shown in Figure 8.16. The TXSTA register allows for: 
selecting the transmission mode as synchronous (bit SYNC = 1) or asyn-
chronous (bit SYNC = 0); enabling transmission (bit TXEN = 1); enabling 
the transmission of the ninth bit (bit TX9 = 1) and storing its value in bit 
TX9D; and selecting the transmission speed in asynchronous mode with 
the bit BRGH (high baud rate select bit) as high speed (BRGH = 1) or low 
speed (BRGH = 0). The status of the shift register TSR in the transmitter 

Interrupt
request

Data bus

FIFO

CREN OERR FERR
× 64

RX9

RX9D RCREG register

RSR register

RCIF

RCIE

Data recovery

RX/DT
pin 7 0

Start

9th, bit

Input
control

SPEN

Stop
8

(8)

(8)

SPBRG register

Clock generator

Figure 8.15 
Receiver in the USART serial port.

01234567

5 0123467

TXSTA

CSRC TX9 TXEN SYNC

SPEN RX9 SREN CREN FERR OERR RX9D

-

-

BRGH TRMT TX9D

RCSTA

Figure 8.16 
TXSTA and RCSTA registers used to control data transmission (TXSTA) and reception 
(RCSTA) in the USART serial port.



220	 Microcontrollers: Fundamentals and Applications with PIC

can be known by the bit TRMT (transmit shift register status bit). TRMT = 
1 means that the TSR register is empty. The bit CSRC (clock source select 
bit) is used to program the USART serial port as a master (CSRC = 1) or as 
a slave (CSRC = 0) for synchronous communication. It does not have any 
effect in asynchronous mode.

The RCSTA register allows for: enabling the serial port with the bit 
SPEN (serial port enable bit) set to 1, meaning that the RX and TX pins 
are configured as serial port terminals; enabling data reception with the 
bit CREN (continuous receive enable bit) set to 1; and enabling the recep-
tion of the ninth bit with RX9 = 1, storing its value in RX9D. The bit FERR 
(framing error bit) indicates the reception of nonvalid data (stop bit is not 
0) when its value is 1. The bit OERR (overrun error bit) is set to 1 if it has 
stopped receiving data. The bit SREN (single receive enable bit) enables 
the reception of a single data in synchronous mode but does not have any 
effect in asynchronous mode.

8.2.3  Synchronous Mode

The USART serial port in synchronous mode is able to: (a) establish non-
simultaneous bidirectional data communication (half duplex); (b) simul-
taneously transmit or receive data and clock signals; and (c) communicate 
between two devices using a master–slave approach.

In synchronous mode, the communication is bidirectional but not simul-
taneous (half duplex). Each device can transmit and receive data but these 
two operations cannot occur simultaneously; when the serial port transmits, 
it cannot receive and when it is receiving, it cannot transmit. Transmitters 
and receivers follow the schematics shown in Figures 8.14 and 8.15. In this 
communication mode, the clock signal is available at one of the microcon-
troller pins (TX/CK) and the data signal in pin TX/DT. The data signal con-
sists of the sequence of bits from the words to be transmitted. Figure 8.17 
shows the typical data and clock signals handled by the USART serial port 
in synchronous communication. It can be seen that they do not contain the 
start and stop bits that are typical in asynchronous communication.

The USART serial port in synchronous mode can act as a master or 
slave. The master is the device that generates the clock signal either as a 

TX/CK
pin

Word 1 Word 2

D0 D1 D2 D3 D4 D5 D6 D7 D1 D2 D3 D4 D5 D6 D7
9th
bit

9th
bitD0RX/DT

pin

Figure 8.17 
Clock and data signals in the synchronous transmission through the USART serial port. 
The transmission of the ninth bit is optional.



Serial Input and Output	 221

transmitter or as a receiver. The master initiates and ends the communica-
tion with the slave by introducing or removing the clock signal. The TX/
CK pin can be used as input or output for the clock signal; it is an out-
put for the master and an input for the slave. Figure 8.12b illustrates the 
connection between two microcontrollers using the pins in the USART 
serial port in synchronous mode. An important feature is that a slave can 
receive or transmit data even when it is in low-power mode (sleep). In this 
case, the PIC wakes up and can generate an interrupt request if the global 
enable bit for the interrupts allows it (GIE = 1).

In synchronous mode, the USART serial port is programmed by setting 
bit SYNC in the TXSTA register to 1. When bit SPEN in the RCSTA register 
is set to 1, the pins in the USART serial port are enabled: CK for the clock 
and DT for the data signal. In transmission, once the TXREG is empty 
because the data has been moved to the shift register TSR, the bit TXIF in 
the PIR register is set to 1. This indicates that the port is ready to transmit 
new data. If the transmission interrupt is enabled (TXIE = 1 in the PIE 
register) it generates an interrupt when bit TXIF is set to 1. The bit TXIF 
is automatically set to 0 when new data is loaded in TXREG. In reception 
mode, when there are data in RCREG, the bit RCIF in the PIR register is 
set to 1. If bit RCIF in the PIE register is 1, it generates an interrupt request. 
The bit RCIF is automatically set to 0 when the register RCREG is emptied 
due to being read by the program.

8.2.4  Communication Speed

The clock that determines the serial port transmission speed is derived 
from the main microcontroller oscillator. Its value can be adjusted with 
the SPBRG register and the bit BRGH in the TXSTA register. The transmis-
sion velocity in asynchronous mode is

	
v fT

BRGH

OSCSPBRG
=
× +

×
4

64 1( )
,	 (8.2)

with vT being the transmission speed in bits per second, fosc the frequency 
of the main oscillator in Hz, BRGH can be 0 or 1, and SPBRG is a number 
between 0 and 255. Table 8.2 shows some calculated transmission speed val-
ues following Equation 8.2. The error in the table has been calculated as

	
Error(%)=

−v v
v

T, calculated T, target

T, targett
×100 .	 (8.3)

If the USART serial port has been programmed in synchronous mode, 
the transmission speed is given by



222	 Microcontrollers: Fundamentals and Applications with PIC

	
v fOSC
T SPBRG
=
× +4 1( )

.	 (8.4)

In this communication mode the bit BRGH in the TXSTA register is not 
used.

Example 8.1

Basic programming of the USART serial port, in asynchronous mode in a 
PIC16F873. The frequency of the main oscillator is 4 MHz.

The program has three parts: First, it is necessary to initiate the serial port in 
asynchronous mode establishing a predetermined communication speed. The 
second part is to write a subroutine to transmit data. The third part is to write a 
subroutine to receive data. This program uses polling input/output.

		  ;
		  ; INIT_SCI: Subroutine to initiate the USART serial port in  
		  ; asynchronous mode at 19200 bits/s
		  ;
		  INIT_SCI:
			   bsf		  STATUS, RP0		 ; Select bank 1.
			   movlw		 0Ch				    ; Transmission speed 19200 bit/s.
			   movwf		 SPBRG
			   movlw		 0CFh				    ; Program RC7/RX pin as input
			   movwf		 TRISC				   ; and RC6/TX pin as output.
			   movlw		 24h				    ; Asynchronous mode, 8 data bits,
			   movwf		 TXSTA				   ; enable transmission, BRGH = 1.
			   bcf		  PIE1, TXIE		 ; Transmission interrupt enabled.
			   bcf		  PIE1, RCIE		 ; Reception interrupt enabled.

Table 8.2

Some USART Communication  Velocities in Asynchronous Mode and 
Percent Error in the Target Velocity

vT target/(bit/s) fOSC/MHz BRGH
SPBRG 

(Decimal)
vT. calculated /

(bit/s)
Error 

%

1200 4 0 51 1201.92 0.16
1200 16 0 207 1201.92 0.16
2400 4 0 25 2403.85 0.16
2400 16 0 103 2403.85 0.16
9600 16 0 25 9615.38 0.16

19200 4 1 12 19230.77 0.16
19200 16 1 51 19230.77 0.16
1200 5.0688 0 65 1200.00 0
2400 5.0688 0 32 2400.00 0
9600 5.0688 1 32 9600.00 0



Serial Input and Output	 223

			   bcf		  STATUS, RP0		 ; Select bank 0.
			   movlw		 90h				    ; Enable reception, 8 data bits.
			   movwf		 RCSTA				   ; USART ready to transmit and receive data.
			   return						      ; Return.
		  ;
		  ; TXDATA: Subroutine to transmit 8 data bits.
		  ; Data to transmit must be in W register.
		  ;
		  TXDATA:
			   btfss		 PIR1, TXIF		 ; TXIF=1?
			   goto		  TXDATA			   ; No, wait.
			   movwf		 TXREG				   ; Yes, store data in TXREG.
			   return						      ; Return.
		  ;
		  ; RCDATA: Subroutine to receive 8 data bits.
		  ; The received data is stored in W register.
		  ;
		  RCDATA:
			   btfss		 PIR1, RCIF		 ; RCIF=1?
			   goto		  RCDATA			   ; No, wait.
			   movf		  RCREG, W			  ; Yes, read data.
			   return						      ; Return with data in W.

8.3  The Synchronous Serial Port in PIC Microcontrollers

Medium-end PIC microcontrollers have a serial port for short distance syn-
chronous communication using the clock signal. The two versions of this 
serial port are called synchronous serial port (SSP) and master synchro-
nous serial port (MSSP). Any of these ports can be configured to work as a 
serial synchronous SPI (serial peripheral interface) or as an I2C interface.

In the SSP, the I2C interface can only work as a slave, whereas in the 
MSSP it can be programmed as a master or as a slave. The SPI was ini-
tially designed for the Motorola 68HCxx family of microcontrollers. Both, 
the SPI and the I2C interface have been developed for communication 
between devices (microcontrollers, external memory, displays, A/D con-
verters, etc.) located at short distances using a small number of connect-
ing lines. Each of these interfaces is described in further detail in the next 
sections.

8.3.1  SPI

The SSP or MSSP, when programmed as an SPI, can transmit 8-bit data syn-
chronously and simultaneously. The SPI can work as a master or as a slave. 
The master is the device that generates the clock signal independently of 
being a transmitter or a receiver. This communication uses three micro-
controller pins that share functions with the parallel port C. These pins 
are: SDO and SDI for data output and input, respectively; and SCK for the 
clock. The SCK clock pin is an output pin in the master and an input pin 



224	 Microcontrollers: Fundamentals and Applications with PIC

in the slave. A fourth pin called SS# 
(slave select) can be used for a mas-
ter device to select one of the sev-
eral devices programmed as slaves. 
Figure 8.18 shows the use of these 
pins in the connection between 
two PIC microcontrollers.

The SPI uses the special function 
register SSPBUF to temporarily 
store either the data to be transmit-
ted or the received data. It also uses 
the SSPCON and SSPSTAT registers 
to control the interface. Also, the 
bits SSPIE and SSPIF in the PIE and 

PIR registers are used to control and flag the interrupt requests generated 
by the interface. Figure 8.19 shows the use of the bits in the SSPCON and 
SSPSTAT registers. These registers are also used to control the I2C interface, 
but in this case, some of the bits have different meanings.

The bit SSPEN (SSP enable bit) assigns the pins SCK, SDO, SDI, and SS# 
to the serial synchronous port although they must be defined as inputs or 
outputs by setting to 1 or 0 the appropriate bits in the TRIS register. Bits 
SSPM3:SSPM0 in the SSPCON register program the device as a master or 
as a slave, enable or disable the use of the SS# pin as slave control, and 
select the clock frequency for the SPI. In the master, the clock signal SCK 
can be a fraction (1/4, 1/16, or 1/64) of the main oscillator frequency or 
can be obtained through Timer2. The bit WCOL (write collision detect bit) 
in the SSPCON register informs when there has been a collision in the 
SSPBUF register. A collision in this case means an attempt to write data 
when the previous data was still in the register. The bit SSPOV (receive 
overflow indicator bit) notifies if data has ceased to be received and stored 
in SSPBUF. The bit CKP (clock polarity select bit) programs the state of 
the clock signal (0 or 1) when there are no data to be transmitted.

SSPCON

SSPSTAT

7 6 5 4 3 2 1 0

00 0 0 BFCKESMP

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

0
7 6 5 4 3 2 1 0

Figure 8.19 
SSPCON and SSPSTAT registers used to control data transmission and reception with the 
SPI.

SDO
SDI

SCK

SDO
SDI
SCK
SS#

PIC # 1 PIC # 2
(Master) (Slave)

Figure 8.18 
Two PIC microcontrollers connected using 
the SPI.



Serial Input and Output	 225

The SPI operates in the following way: In the master, the transfer is 
initiated by writing data in the SSPBUF register. At this point, the data is 
moved to the shift register SSPSR, as shown in Figure 8.20, and begins to 
be transmitted immediately by the pin SDO. At the same time, it starts 
receiving data in the SDI pin. When the reception of data is completed, 
the bit BF (buffer full status bit) in the SSPSTAT register is set to 1 and the 
received data is available in the SSPBUF register. Also, the bit SSPIF in 
the register PIR is set to 1. This allows generating an interrupt request if 
the SSP interrupt is enabled by having the bit SSPIE in the PIE register set 
to 1. Once the data is extracted from the SSPBUF register, it is possible to 
write new data in this register, continuing the process of data transmis-
sion and reception.

SSPBUF register

SSPSR

Shift register

Prescaler Main
oscillator

SSPM3:SSPM0

Clock

Timer2

Clock
selection

Enable SS#

Edge
selection

Edge
selection

TRIS<x>

SDI pin

SDO pin

SS# pin

SCK pin

Data Bus 

Figure 8.20 
SPI block diagram.



226	 Microcontrollers: Fundamentals and Applications with PIC

Figure 8.21 shows the signals for the SPI in master mode. When there is 
no data to be transmitted, the clock signal SCK is kept in idle state. This 
idle state can be 0 or 1 depending on how it was programmed in the CKP 
bit from the SSPCON register. Data bits can be synchronously transmit-
ted with the rising or falling clock edges. This can be programmed with 
bit CKE (SPI clock edge select bit) in the SSPSTAT register. The sampling 
of the data signal can be done at half time or at the end of each bit. This 
is programmed with bit SMP (SPI data input sample phase bit) in the 
SSPSTAT register.

In a device programmed as a slave, data transmission and reception 
is initiated when it receives the clock signal. The data to be transmitted 
must be stored in SSPBUF. When the transmission has finished, the data 
received is available in the same register, SSPBUF, where it can be read. 
The reception of the data is flagged with bit BF in the SSPSTAT register 
being set to 1. But SSPIF in the PIR register is also set to 1. This allows 

Data to be transmitted
is written in SSPBUF

SCK

D7 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

(a)

(b)

(a)

(b)

(c)

(d)

SDO

SDI

Received data is available
in SSPBUF

Figure 8.21 
Signals from the SPI for the device programmed as a master. The transmission starts when 
the data to be transmitted is written in the SSPBUF register. It is possible to program four 
variations for the clock signal in SCK: In (a) and (c), the idle state is 0, whereas in (b) and (d) 
it is 1. It is also possible to program the clock edge to synchronize the data signal. This is 
indicated by arrows in the signal in SCK. In (a) and (d) data is stable with the falling edge 
of SCK, whereas in (b) and (c) it happens with the rising edge. The received data signal in 
SDI can be sampled at times (a) in the middle of each transmitted bit or (b) at the end of 
each transmitted bit. When the last bit for the input signal is sampled, the received data is 
available in the SSPBUF register.



Serial Input and Output	 227

generating an interrupt request if the SSP interrupt is enabled by setting 
the bit SSPIE in the PIE register to 1.

If the slave device is in low-power mode and receives a clock signal, it 
receives data and transmits the data that was stored in SSPBUF. In this 
case, the bit SSPIF in the PIR register is set to 1 and if the interrupt is 
enabled, the PIC services it and wakes up, leaving the low-power mode.

Example 8.2

Data transmission and reception using the SPI port in a PIC16F873 with a clock 
frequency of 4 MHz.

This example shows how to program the SPI port with the following param-
eters: programmed I/O technique, master mode, communication clock 1/16 of 
main oscillator frequency, idle state for SCK is 1, and data transmitted with fall-
ing SCK edge. The example also shows the subroutine to receive and transmit 
data. The program assumes that the data to be transmitted has been previously 
stored in the DATATX register and the received data is stored in the DATARX 
register.

		  ;
		  ; Serial port SPI programming. Fosc = 4 MHz.
		  ;
				    list 		 p=16f873
				    #include	<p16f873.inc>
		  ;			 
		  DATATX			   equ			   20h		  ; Data to transmit.
		  DATARX			   equ		  21h			   ; Received data.
		  ;
		  ; INIT_SPI: Subroutine to initiate serial port SPI.
		  ;
		  INIT_SPI:	
				    bsf 		  STATUS, RP0				   ; Select bank 1.
				    movlw		 40h						      ; SMP=0, CKE=1, BF=0.
				    movwf 	 SSPSTAT
				    movlw		 0D7h						      ; Program pins RC5/SDO and
														              ; RC3/SCK as outputs
				    movwf		 TRISC						     ; and RC4/SDI as input.
				    bcf		  STATUS, RP0				   ; Select bank 0.
				    movlw		 31h						      ; SSPEN=1, CKP=1, SPI master,
														              ; clock Fosc/16 (250 kbit/s).
				    movwf 	 SSPCON
				    bsf 		  STATUS, RP0				   ; Select bank 1.
				    bcf 		  PIE1, SSPIE				   ; Disable SPI interrupt.
														              ; SPI ready to transmit and  
														              ; receive data.
				    bcf		  STATUS, RP0				   ; Select bank 0.
				    movf		  DATATX, W				    ; Transmit
				    movwf		 SSPBUF					     ; first data.
				    return
		  ;
		  ; TRANSFER: Routine to transmit and receive 8-bit data.
		  ; Inputs: Data to be transmitted stored in DATATX.
		  ; Outputs: Received data stored in DATARX.
		  ;
		  TRANSFER:



228	 Microcontrollers: Fundamentals and Applications with PIC

				    bsf		  STATUS, RP0				   ; Select bank 1.
		  WAITING:
				    btfss		 SSPSTAT, BF				   ; Receive data?
				    goto		  WAITING					     ; No – wait.
				    bcf		  STATUS, RP0				   ; Yes – select bank 0 and
				    movf		  SSPBUF, W				    ; read received data, store it  
														              ; in W and
				    movwf		 DATARX					     ; store it finally in DATARX.
				    movf		  DATATX, W				    ; Data to be transmitted is  
														              ; stored in
				    movwf	SSPBUF						      ; SSPBUF, initiating the  
														              ; transmission
														              ; and reception of new data.
				    return
				    end

8.3.2 I 2C Interface

The SSP can work as an I2C interface in slave mode. To implement a mas-
ter I2C interface, the microcontroller needs an MSSP. In the MSSP, the I2C 
interface can be configured as a master or as a slave. The interface uses 
pins SDA and SCL for data and clock, respectively. These pins normally 
share function with port C pins. Figure 8.22 shows the block diagram for 
the I2C interface. A critical element in this interface is the shift register 
SSPSR. Each transmitted or received byte—either data, address, or part of 
an address (when using 10-bit addresses)—must travel through this reg-
ister. The register SSPSR cannot be seen by the programmer. The commu-
nication between this register and the programmer is done by using the 
special function register SSPBUF. Any data or address to transmit to the 
bus must be stored in SSPBUF. Any data received by the bus can be read in 
SSPBUF. Each time that a byte is received or transmitted, the bit SSPIF in 
the PIR register is set to 1. This generates an interrupt request if bit SSPIE 
in the PIE register is set to 1.

This interface also uses the SSPADD register that works differently in 
master or slave modes. In slave mode, the special function register SSPADD 
stores the address of the device. When the master calls by storing the slave 
address in the bus, it compares the address sent by the master with the 
address of the slave stored in SSPADD. If the addresses are the same, the 
slave carries out an action to respond to the master and establish the com-
munication. This action can simply be to generate an interrupt request 
(the bit SSPIF in the PIR register is set to 1).

When working as a master, the SSPADD register is used to set the fre-
quency of the clock generated by the master. In this case, the address that 
the master must store in the bus to call a slave, reaches the shift register 
SSPSR through the special function register SSPBUF. The master device 
also has circuits to generate the start and stop conditions. A slave device 
only has the circuits to detect these conditions. The control of these cir-
cuits is done by the special function registers SSPSTAT and SSPCON2. 



Serial Input and Output	 229

In a master device, the frequency of the clock signal in pin SCL can be 
obtained as

	
f f
SCL

OSC

SSPADD
=
× +4 1( )

,	 (8.5)

where fSCL is the frequency of the clock in the SCL line of the bus, fosc is 
the frequency of the main oscillator in the microcontroller, and SSPADD 
is the number made of the 7 least significant bits in the SSPADD regis-
ter (SSPADD<6:0>).

Data Bus 

SDA pin

(Only in MSSP)

SCL pin

SSPBUF register

SSPADD register

(Only in MSSP)

SSPSR

Address
comparator

Shift register

To bits S and P
in SSPSTAT

register

From bits SEN,
RSEN and PEN

SSPCON2 register

Clock

Clock generator

Correct
addressStart and stop

detector

Start & stop
generator

Figure 8.22 
Block diagram of the SSP interface in I2C mode. Data and addresses are transferred from or 
to the bus using the SSPBUF register. The shift register SSPSR is invisible to the program-
mer. The register SSPADD stores the address of the slave device or the communication 
speed in master mode. The generators for the start and stop conditions, as well as the clock 
generator, only exist in master devices.



230	 Microcontrollers: Fundamentals and Applications with PIC

Figure 8.23 shows the bits in the SSPCON, SSPSTAT, and SSPCON2 reg-
isters as used by the I2C interface. The SSPCON2 register only exists in 
those devices that can be masters, that is, they have an MSSP.

Bits SSPM3:SSPM0 in the SSPCON register are used to program the 
device as a master or slave I2C interface using a 7-bit or 10-bit address. The 
bit SSPEN (SSP enable bit) assigns pins SDA and SCL to the I2C interface or 
to the parallel port C. Bit WCOL (write collision detect bit) in the SSPCON 
register informs about collisions in the SSPBUF register. A collision occurs 
when the device tries to write data in the SSPBUF when the previous data 
is still in that register. The bit SSPOV (receiver overflow indicator bit) 
indicates if the device has ceased to read data received and stored in the 
SSPBUF register. The bit CKP (clock polarity select bit) is used to control 
the clock in the slave.

In the SSPSTAT register, bits S (start bit) and P (stop bit) indicate the 
detection of the start and stop conditions. R/W# (read/write bit infor-
mation) is a bit that accompanies the address and indicates if the slave 
is a receiver or a transmitter. UA (update address) is only used in 10-bit 
addresses indicating that the slave address in the register SSPADD must 
be updated. The bit BF (buffer full status bit) indicates if the SSPBUFF 
register is full or empty. D/A# (data/address bit) indicates if the last trans-
mitted or received byte is data or an address. The bit SMP (sample bit) 
controls the slew rate of signals in high-speed mode (400 kHz).

The SSPCON2 register is used to control the I2C interface when it 
is configured as a master. Bits SEN (start condition enable bit), RSEN 
(repeated start condition enable bit), and PSEN (stop condition enable 
bit) generate the conditions for start, repeated start, and stop. RCEN 
(receive enable bit) enables the slave reception. ACKEN (acknowledge 
sequence enable bit) enables the generation of an acknowledgment bit 

GCEN ACKSTAT ACKEN RCEN PENACKDT SENRSEN

BFUAP S R/W#CKE D/A#SMP

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

SSPCON2
7 6 5 4 3 2 1 0

SSPSTAT
7 6 5 4 3 2 1 0

SSPCON
7 6 5 4 3 2 1 0

Figure 8.23 
SSPCON, SSPSTAT, and SSPCON2 registers used for data transmission and reception by 
the I2C interface. The SSPCON2 only exists in devices with an MSSP.



Serial Input and Output	 231

(A). The value of this bit must be in ACKDT (acknowledge data bit). 
ACKSTAT (acknowledge status bit) informs of the received acknowl-
edge bit. GCEN (general call enable bit) enables interrupt request for a 
general call.





233

9
Analog Input and Output
Signal Acquisition and Distribution

The previous chapters have described how microcontrollers can acquire, 
process, and generate digital signals that are used, for example, to com-
municate with other circuits and subsystems. This chapter is focused on 
the acquisition and generation of analog signals using external modules, 
peripheral devices, or the devices already integrated inside the microcon-
troller. We put special emphasis on the basic criteria used for the design 
of the external modules.

Analog signals are common in measurement and control systems as well 
as in communications involving human intervention, such as microphones, 
speakers, and cameras. Analog signals carry information in their ampli-
tude or in their frequency or period, and it is necessary to digitize them 
first to process them with digital circuits. This requires the use of circuits  
to adapt their characteristics to the specifications of the digitizing devices. 
Furthermore, because it is common for analog systems to process signals 
located farther away from the microcontroller, it is necessary to use the 
appropriate devices to prevent damage from excessive voltages or currents.

9.1 � Structure of a System for Signal 
Acquisition and Distribution

9.1.1  Basic Functions of Measurement and Control Systems

Most of the signals that need to be measured in a control system are non-
electrical signals. Also, the majority of the signals to control, such as the 
temperature in a room and the position of the head in a printer, as well as 
the signals to communicate the results to the user, are also nonelectrical. 
The basic functions for a measurement system are:

To detect the quantity with a •	 sensor

To process the information•	

To communicate the information to the user or another machine•	



234	 Microcontrollers: Fundamentals and Applications with PIC

Two additional functions involved in this process are to supply electri-
cal energy to the system and to control all those functions (Figure 9.1). The 
processor is normally based on a digital device, for example, a microcon-
troller that can also control and coordinate those functions. If the goal of 
the measurement system is to control a variable, after the measurement 
and processing of the signals, it is necessary to use an actuator to convert 
the electrical output signal into the desired physical action, such as start a 
heater or turn on a motor.

Typical sensors yield low-amplitude analog signals. Only a few sensors, 
such as position encoders, offer a digital output that if it has the appropriate 
voltage levels could be directly connected to the port of a microcontroller. 
The rest of the sensors need to have their output signals amplified and 
then digitized by means of an analog-to-digital (A/D) converter. To adapt 
the analog signal to the range of expected amplitude at the input of the 
A/D converter, a signal conditioner is used. In some cases, the signal needs 
additional analog processing, for example, to obtain its rms value or to be 
demodulated before being digitized. The output of the A/D converter is 
then processed to obtain the required information, for example, the mean 
value of a signal during a specific length of time. Often, signals from dif-
ferent sensors are combined to make a decision, for example, for intrusion 
detection in a given location. The main blocks shown in Figure 9.1 can be 
expanded as shown in Figure 9.2.

Therefore, there are two main types of functions: conversion and condi-
tioning. Conversion functions create an electrical signal from a nonelectrical 
signal, or they create a digital signal from an analog signal. Conditioning 
means to adapt the output signal to the needs of the input for the next stage.

Analog-to-digital conversion can be seen as comparing an unknown 
voltage (vx) with a reference voltage (Vref) as shown in Figure 9.3. Direct 
A/D conversion compares the voltage vx with fractions of the voltage Vref, 
each one with a value equal to L × Vref/2N, with L and N being integer 
numbers. The comparison can be done simultaneously with all the values 

Power

Sensor Processor
Communication/

Presentation

Control

Figure 9.1 
Basic functions in a measurement system. Changes in the supply voltage and control sig-
nals, can affect the output signals for each block.



Analog Input and Output	 235

between 0 V and Vref V (flash converters), or in consecutive steps using frac-
tions that optimize the decision process (successive approximation convert-
ers). Successive approximation converters are the type of A/D converters 
normally found in microcontrollers. The transfer characteristic for an 
A/D converter with N = 3 is shown in Figure 9.3.

Indirect A/D conversion needs an additional circuit that generates a 
time interval proportional to the input voltage. The length of this time 
interval is then compared with the time interval generated by the refer-
ence voltage using the same circuit. The digital counter measures both 
time intervals to create the digital conversion. Other indirect converters 
generate a signal with a frequency proportional to the input voltage, and 
measure it with a digital counter.

Sensors that embed the information in the frequency, period, time inter-
val, pulse width, duty cycle, phase, and so forth of their output signal, 
are called quasidigital sensors. Although their output is not digital, a sim-
ple counter yields a digital code. That is, the sensor itself carries out part 
of the indirect A/D conversion. Because the result of the counting is an 

Driver

Conditioning
circuit

Analog
processor

X Y Vo D
ADCSensor

Figure 9.2 
Front-end in a signal acquisition system: the signal conditioner adapts the input signal 
coming from the sensor to the input range for the A/D converter. The analog processor can 
be used to obtain a parameter of interest before digitizing the signal, for example, its rms 
value, or it can demodulate the signal as needed.

000
Q

Q

2Q 3Q 4Q 5Q 6Q 7Q 8Q

Q

Vx

(Vmin+Vmax)/2 VmaxVmin

001

010

011

100

101

Bi
na

ry
 C

od
e

110

111

t1 t2

ADC

LSB

MSB 0 1 1
1 1 1
1 1 1
1 0 1
1 0 1
0 1 1
1 0 1
0 1 1t3

Vx

Vs+ Vs–

Vref

t1 t2 t3

Figure 9.3 
Direct analog-to-digital conversion process and its transfer characteristic.



236	 Microcontrollers: Fundamentals and Applications with PIC

integer number, the transfer characteristic for the indirect conversion is 
also that in Figure 9.3, which can be described by

	
D v

V
N

x
x

ref
=










+int 2 1 ,	 (9.1)

with Dx being the order number for the output code (between 1 and 2N); 
int(a) the highest integer equal or less than a, vx < Vref; and N the num-
ber of bits in the converter. In an unsigned binary code, the first code is 
000…0 and the last code is 111…1. When the value of Vref can be chosen, as 
happens in several microcontrollers, the accepted range for input voltages 
depends on the selection of Vref.

The staircase transfer characteristic of an A/D converter causes all input 
voltages within the range [VT, VT + Q] to be assigned to the same code. 
Here, VT is any of the threshold voltages after which the assigned code is 
different, and Q is the so-called quantization interval:

	
Q V

N= ref

2
.	 (9.2)

In an A/D converter, Q  =  1  LSB. Quantization implies that given a 
certain output code, it is not possible to know exactly the input voltage 
that produced that code because several voltages produce the same code. 
Quantization determines the resolution of the system, that is, the lowest 
change in voltage that will produce a code change.

9.1.2	 Dynamic Range

The circuitry between the sensor and the A/D converter is called analog 
front-end (AFE). This AFE needs to be designed taking into account the 
dynamic range (DR) of the measurement, defined as

	
DR Measurement Range

Resolutionx
x x

x
= =

−max min

∆
.	 (9.3)

It is possible to define the dynamic range for the input or output in any 
stage as

	

DR = −V V
V

max min

∆
	 (9.4)

with ΔV being the resolution in that particular stage.



Analog Input and Output	 237

The resolution at the input of a stage is the lowest change that produces 
a change in the output. The resolution at the output of a stage is the reso-
lution at the input multiplied by the voltage gain for the stage. Therefore, 
stages with unity gain have the same resolution at their input and at their 
output. In an A/D converter,

	

DRA/D =
−

=
−

≈
V V

Q
Q

Q

N
Nmax min ( )2 1 2 .	 (9.5)

The design of the analog front-end is based on the dynamic range of 
the measurement because this value determines the number of bits for 
the A/D converter. Because the A/D has specific requirements regard-
ing its range and voltage values, the front-end stage must adapt the 
sensor output to these specific requirements. Therefore, in the design 
of the stages, shown in Figure 9.2, choosing the sensor and the A/D 
converter determines the intermediate stages. In a correct design, the 
dynamic range at the input of each stage must be equal or higher than 
the dynamic range of the preceding stage, as shown in Figure 9.4. Noise 
is the rms value of the signal measured at the output of a stage when 
its input is zero. Noise determines the ultimate resolution of the mea-
surement system. If a stage has a very large gain, the noise of the next 
stage is insignificant compared with the noise produced by that previ-
ous stage.

Positive voltage supply

Negative voltage supply

A/D
input

A/D
output

Xmax

Ymax

Vmax

Vmin

Vo, max

Vo, min

Ymin

Dmax

Dmin

∆X
Xmin

Q

N bits

1 LSB

Sensor
noise

Processor
noise

Figure 9.4 
The A/D converter must have a bigger dynamic range than the sensor. Also, the stages 
between them must have a bigger dynamic range than the A/D converter.



238	 Microcontrollers: Fundamentals and Applications with PIC

Example 9.1

We wish to measure a temperature between –40°C and 60°C with a resolution 
of 0.5°C. How many bits does the A/D converter need? If we use a sensor with 
a sensitivity of 1 mV/°C and an A/D converter with an input range between 
0 V and 5 V, how much gain is necessary? Calculate the effective resolution 
obtained when measuring temperature without the use of amplification.

The measurement range is

	

DR C °C
C

=
− −

=
60 40

0 5
200°

°
( )
.

Using Equation 9.5,

	

N = =
log
log

.200
2

7 6 bit

Therefore, the A/D converter should have 8 bits.
The sensor voltages at the limits of the measurement range are –40 mV and 

60 mV. To condition these voltages to the 0 V to 5 V range at the input of the 
A/D converter, a gain of it is necessary

	

G = −
− −

=
5 0

60 40
50V V

mV mV( )
.

The analog processor also needs to shift the voltage by 40 mV in order for 
the –40°C to correspond to 0 V, which is the minimum voltage at the input 
of the A/D converter. This level shift must be introduced before the signal is 
amplified.

Without amplification, given that the resolution of the A/D converter is 5 V/28 
= 19.5 mV and the sensitivity of the sensor is 1 mV/°C, the effective resolution 
is 19.5°C. Also, if the output voltage is not shifted, the negative voltages that 
correspond to the temperatures between –40°C and 0°C will not be digitized.

9.1.3  Bandwidth

In addition to conditioning the amplitude and range, the front-end must 
adapt the frequency of the signal to be digitized to the specifications of 
the A/D converter. Each block in the analog front-end must have a fre-
quency response adequate to the signal to be processed. The bandwidth 
of a signal is defined as the difference between the maximum and mini-
mum frequencies that bring significant information to the signal. The 
central frequency is defined as the geometric mean between the extreme 
frequencies:



Analog Input and Output	 239

	
f f fc = max min .	 (9.6)

Depending on the relationship between these frequencies it is pos-
sible to differentiate between narrowband signals and wideband signals. 
Narrowband signals are those signals in which fc  >  fmax  –  fmin, whereas 
wideband signals are those signals in which fc < fmax – fmin. Figure 9.5 shows 
examples of these two types of signals.

From this classification it is possible to see how, for example, a sig-
nal between 1  MHz and 2  MHz is a narrowband signal and a signal 
between 1 Hz and 100 Hz is a wideband signal. Wideband signals are 
more difficult to process because the processor specifications must be 
kept uniform within the bandwidth. Signals that only have very low 
frequency components, less than 0.1 Hz, are called dc (direct current) sig-
nals, whereas those that have higher frequencies are called ac (alternate 
current) signals.

The circuit bandwidth is the frequency region in which the response to an 
input signal is within ±3 dB of the frequency response in the middle of the 
frequency interval as shown in Figure 9.6. The central frequency is defined 
as the geometric mean of the frequencies at –3 dB.

When stages or circuits are connected without any intervening series 
capacitors, the connection is called dc coupling. When a series capacitor is 
used, the connection is called ac coupling. In this case it is necessary to take 
into account that series capacitor will attenuate low-frequency signals.

9.1.4  Signal Sampling

In direct A/D converters, the digitized value is equal to the value that 
the input voltage has during the conversion process. For this reason, 

A
m

pl
itu

de

A
m

pl
itu

de

fmin fmaxfc fmin

f f
fmaxfc

Figure 9.5 
Narrowband signal (left) and wideband signal (right). The criteria to determine fmax and fmin 
depend on each specific signal. The maximal amplitude does not necessarily correspond to 
fc. The amplitude is not necessarily uniform between fmax and fmin.



240	 Microcontrollers: Fundamentals and Applications with PIC

the voltage must be kept constant while it is being digitized. This can 
be achieved by using a sample-and-hold amplifier (SHA). The number of 
samples that need to be taken in a unit of time depends on the type of 
processing that will be done. The best choice would be to use an ideal 
digital interpolating filter. In this case, the sampling frequency is given 
by the Nyquist criterion, which specifies that the sampling frequency has 
to be higher than twice the signal bandwidth. If the sampling frequency 
is less that the Nyquist frequency, alias signals will appear, as shown in 
Figure 9.7.

For periodic signals it is possible to take samples at different peri-
ods as shown in Figure  9.8. This reduces the sampling rate required. 
This technique is called repetitive sampling and is widely used in digital 
oscilloscopes.

9.1.5 � Architectures for Signal Acquisition: High-
Level and Low-Level Mutiplexing

To digitize several signals, if the A/D converter is fast enough, we do not 
need to use one A/D converter for each signal. Instead, a single A/D con-
verter can be shared by all the signals using an analog multiplexer. This is a 
set of analog switches with a common output. At any given time, only one 
of the switches is closed—the one whose input will be digitized.

G

0 dB <3 dB
3 dB

G0

fL fc fH flg

/

Figure 9.6 
Circuit bandwidth is defined with respect to the frequencies with a gain within ±3 dB com-
pared to the response at the central frequencies.

Figure 9.7 
Aliasing appearing when sampling at a frequency below the Nyquist frequency.



Analog Input and Output	 241

The location of the multiplexer in the measurement system leads to 
several architectures for data acquisition. The most common architec-
tures use high-level or low-level multiplexing. Systems with high-level 
multiplexing, like that shown in Figure  9.9, only accept large signals 
and have a programmable amplifier with relatively low gain (1, 2, 4, 8) 
after the multiplexer. Therefore, each signal must be conditioned before 
being multiplexed, thus increasing the cost of the design. The advan-
tage of these systems is that their switching speed, and therefore the 
sampling rate, can be fast because each signal has been individually 

1st sample
T + ∆T

T + 2∆T

T + 3∆T

2nd sample

3rd sample

Figure 9.8 
Repetitive sequential sampling: the signal is sampled at increased times within successive 
cycles for the periodic input signal.

Sensor
1

Low
pass
filter

Sensor
2

Low
pass
filter Low

pass
filter

Digital
controller

System bus

AMUX

SHA A/D

Sensor
n

Low
pass
filter

Figure 9.9 
High-level multiplexing: each signal must be conditioned before being multiplexed. SHA, 
sample-and-hold amplifier.



242	 Microcontrollers: Fundamentals and Applications with PIC

adapted to the specifications of the multiplexer. Those microcontrollers 
that include an A/D converter with several analog inputs (normally up 
to 16 inputs) have the multiplexer integrated in the chip but not the 
amplifier or the filter that must be connected externally. Some multi-
channel A/D converters do not incorporate the amplifier or the filter 
either. If it is required to sample several signals simultaneously, it is 
necessary to have a sample-and-hold amplifier for each one of them 
before they are multiplexed.

Systems with low-level mutiplexing, like that shown in Figure 9.10, include 
a programmable gain amplifier with gains between 1 and 500. The input 
signals can be smaller than those required by high-level systems, but 
the errors from the multiplexer will be added to each signal and will be 
amplified. Also, when switching from one channel to the next, it is neces-
sary to wait until the output from the amplifier and the filter are settled. 
This reduces the maximum speed at which the channels can be scanned. 
These low-level acquisition systems are available as peripheral integrated 
circuits.

9.2 � The Front-End in Data Acquisition Systems

The front-end in data acquisition systems must adapt the voltage, current, 
and power levels of the input signal to the A/D converter specifications, 
while maintaining the signal bandwidth.

Sensor
1

AMUX

SHA A/D

Digital controller

System bus

Low pass
filterSensor

2

Sensor
n

Figure 9.10 
Low-level multiplexing: signals do not have to be conditioned before being multiplexed, 
but the switching speed between channels is slower because it is necessary to wait for the 
amplifier and filter outputs to settle.



Analog Input and Output	 243

9.2.1  Attenuators

When the voltage amplitude for 
the input signal exceeds the maxi-
mal voltage allowed by the A/D 
converter, the input signal needs 
to be attenuated. Figure 9.11 shows 
the general structure of a voltage 
attenuator made of two imped-
ances, Z1 and Z2. The figure also 
assumes that the equivalent out-
put impedance for the source is Zo 
and the equivalent input imped-
ance is Zi. In these conditions, the 
attenuation is

	

A V
V

Z Z
Z Z Z Z

Z
Z Z

= =
+ +

≈
+

i

o

i

o i

2

1 2

2

1 2

,	 (9.7)

with the symbol || representing the parallel combination of two imped-
ances. This approximation is valid as long as Zin >> Zo and Zi >> Z2. Zin 
represents the equivalent input impedance for the attenuator once it is 
connected to the next stage. That is, Zin is the equivalent impedance seen 
by the signal source. Its value is

	
Z Z Z Zin i= +1 2 .	 (9.8)

Accomplishing the criterion “much higher than” depends on the A/D 
converter resolution. The criterion will be fulfilled if the effect does not 
influence the A/D converter. This means that the effect of having a finite 
impedance value is less than Q. The evaluation of a parameter that is ide-
ally zero is done in a similar way.

A dc voltage can be attenuated with just two resistors connected, as 
shown in Figure 9.12a, resulting in an attenuation equal to

	

A V
V

R R
R R R R

R
R R

= =
+ +

≈
+

i

o

i

o i

2

1 2

2

1 2

,

	 (9.9)

whereas the equivalent input resistance for the attenuator is

	
R R R Rin i= +1 2 .	 (9.10)

Zo
Zin

Z1

Z2 Vi

Vo

Zi

Figure 9.11 
Voltage attenu-
ator connected 
to a stage whose 
e q u i v a l e n t 
input imped-
ance is Zi.



244	 Microcontrollers: Fundamentals and Applications with PIC

These two equations are used to calculate the values of R1 and R2. The 
tolerance in their values and the effect of the temperature coefficient make 
the actual value of A unknown. To find out this value it is necessary to 
calibrate the system (Section 9.4).

Example 9.2

Design a resistive attenuator with an input resistance of 1 MΩ that will allow 
measuring a voltage of 42 V with a circuit that admits 5 V having an input 
resistance of 1 MΩ.

The attenuation condition (Equation 9.9) and input resistance (Equation 9.10) 
give

	

A 5V
42V

M

eq

eq

in eq

= =
+

= + =

R
R R

R R R

1

1 1 Ω

with Req = R1||R2. From these equations, R1 = 881 kΩ and R2 = 135 kΩ. When 
using resistors with 1% tolerance, the nominal values are R1 = 887 kΩ and R2 = 
133 kΩ. These values slightly increase the attenuation but this assures that the 
signal range will not be exceeded.

If the same circuit was used to attenuate ac signals, the equivalent input 
capacitance (in parallel with Ri) would attenuate more higher frequency 
signals than low frequency signals. This in turn prevents one from deter-
mining the value of the input voltage for wideband signals. This problem 
can be prevented by using the circuit shown in Figure 9.12b that intro-
duces a capacitor C1 in parallel with R1. Choosing C1 so R1C1 = (R2||Ri)Ci, 
the attenuation becomes

Ro

Vo

Rin

R1

R2 Ri

Zo

Vo

Zin

R1

R2 Ri CiViVi

(a) (b)

Figure 9.12 
Voltage attenuator for (a) dc signals and (b) ac signals.



Analog Input and Output	 245

	

A V
V

Z
Z Z Z

Z
Z Z

R R
R R R

= =
+ +

≈
+

=
+

i

o

eq

o eq

eq

eq

i

i1 1

2

1 2

,	 (9.11)

	
Z R R R C Cin i i= +( ) ⊕( )1 2 1 .	 (9.12)

with Zeq being the parallel combination of Z2, Ri, and Ci, and the symbol 
⊕ representing the serial combination of two capacitors. From Equation 
9.11 it can be seen that the attenuation is constant. This attenuator is then 
called a compensated attenuator. These two equations and the condition for 
compensation can be used to calculate the values of R1, R2, and C1.

Example 9.3

Design an attenuator to divide a voltage signal by a factor of 10 at any fre-
quency, with an input resistance of 10 MΩ at low frequency when connected 
to a data acquisition system that has an input impedance of 1 MΩ || 125 pF.

Using Equation 9.11 to obtain the necessary attenuation yields:

	

A
R

R R
=

+
=eq

eq1
0 1.

From here, R1  =  9Req. The condition for the time constants implies C1 
= Ci/9  =  125  pF/9  ≈  14  pF. To obtain the desired input impedance at low 
frequency:

	
R R R Rin eq eqMΩ= + = =1 10 10

Therefore, Req = 1 MΩ implies R2 = ∞ (open circuit). With this, R1 = 9 MΩ. 
Standard values are R1 = 8.98 MΩ (±0.5%) or R1 = 9.09 MΩ (±1%).

If the output impedance of the source (Zo) in Figure  9.12 is not low 
enough, for example, because the input impedance Zin is low at the signal 
frequency due to parasitic capacitances, the previous approximations are 
no longer valid. There is a so-called voltage loading effect, and the attenua-
tion increases as the frequency increases. The general situation is shown 
in Figure 9.13a. For ac voltages coming from a resistive source, it becomes 
the circuit shown in Figure 9.13b, which can be further simplified to the 
circuit in Figure 9.13c with Req = Ro||Rin. The voltage at the input is not Vo 
but Vin, as shown below:



246	 Microcontrollers: Fundamentals and Applications with PIC

	

V V Z
Z Z

V R
R R j f R R C

in o
in

o in
o

in

o in o in i

=
+

=
+ + ( )

1
1 2π nn

eq
eq in

=
+

V
j fR C

1
1 2π

.   (9.13)

The difference between the measured and applied voltages is the abso-
lute error. When it is divided by the input voltage, it becomes the relative 
error. If this error needs to be lower than a predetermined value (ε), it is 
then necessary to meet

	

V V

V
in o

o

−
<ε ,	 (9.14)

giving the condition

	

2
1 2
1

1 2
1

2
1

0
2 2

0
2

π
ε ε
ε

ε
ε

ε
ε

fR C
A A

eq in<
− − +
−

≈
− +
−

=
−

.	 (9.15)

where A0 = Rin/(Ro + Rin) is the dc attenuation. The first approximation 
is acceptable when ε << 1 and the last step assumes A0 very close to 1. 
Equation 9.15 allows us to determine, for example, the maximal frequency 
for the input voltage that yields a relative error smaller than ε.

Example 9.4

Calculate the maximal frequency of a sine signal generated by a source with 
an internal resistance of 600 Ω, when it is connected to a circuit with an input 
impedance of 10 MΩ||100 pF for the loading effect to be negligible in a system 
with 12 bits of resolution.

For the loading effect to be negligible, the undesired attenuation experienced 
by the signal must be less than 1 LSB. 1 LSB = VFS/212. The difference between 
the source voltage and the voltage at the input of the circuit will be maximum 
when the voltage is maximum. Therefore, ε = 1/212. Condition 9.15 can be 
rewritten as

Ro Req

VeqVo

Zo

VoZin Rin CinVinVin CinVin

(a) (b) (c)

Figure 9.13  Equivalent circuits used to analyze voltage-loading effects for ac signals.



Analog Input and Output	 247

	

f
R C

<
−

1
2

2
1π
ε
εeq in

.

With the component values in this example, Req ≈ 600 Ω and Cin = 100, we 
can find f < 58.6 kHz.

9.2.2  Amplifiers

Amplifiers are used to adapt the dynamic range, levels, and terminal con-
figuration between stages, as well as to offer a high input impedance to 
avoid voltage-loading effects. The configuration of the terminals of a stage 
refers to the relationship between the input terminals and the reference 
voltage in that stage. The reference voltage is called common terminal, 
0 V, signal ground, or electric ground (Figure 9.14). When one of the two 
terminals used to measure a voltage signal is directly connected to the 
common terminal, we have a single-ended voltage. When none of the two 
terminals used to measure a voltage signal is directly connected to the 
common terminal, we have a differential signal if the following relationship 
holds true:

	

v v v

v v v

H c
d

L c
d

2

2

= +

= −











.	 (9.16)

vc is called the common-mode voltage and vd is called the differential-mode 
voltage. For example, in a system powered between 0  V and 5  V, if a 

Vo

Zo
Zo

Z´o

Z´o

Zo

Zcm

Zcm
H

H H

L

C

(c)(b)(a)

+

+

L
C

C

Vd/2 Vd

Vc

Vc

Vd/2

Figure 9.14 
Classification of signals depending on the configuration for their terminals: (a) single-
ended, (b) differential, and (c) pseudodifferential. Zcm is the common-mode impedance. 
This value can be zero.



248	 Microcontrollers: Fundamentals and Applications with PIC

differential voltage has a common-mode voltage of 2.5 V, it is possible to 
process positive and negative differential voltages because only their sign 
changes without exceeding the supply voltages.

When condition 9.16 is not met, and therefore the signal is not symmetri-
cal, the signal is said to be a pseudodifferential voltage. For differential and 
pseudodifferential voltages, if Zo = Zo′ ,  the signal is said to be balanced. When 
Zcm is very high, the signal is said to be a floating or off-the-ground signal. Both 
differential and pseudodifferential signals can be described by their three 
terminals: high terminal, low terminal, and common terminal. A single-
ended signal is described by two terminals only: high and common.

A linear amplifier outputs a voltage proportional to the voltage differ-
ence between its high-input terminal and low-input terminal. Similar to 
signal configurations, the input of the amplifiers can be single-ended, dif-
ferential, or pseudodifferential, as shown in Figure 9.15. In a single-ended 
input, the low terminal is the common terminal (0 V) of the power supply 
for the amplifier. This is normally connected to the chassis of the equip-
ment (chassis ground), and in turn to the protective earth conductor for 
the power distribution system. In a differential input, none of the two input 
terminals (high, low) is connected to ground, and the input impedance 
between each terminal and the ground is about the same. In a pseudodif-
ferential input, the low-input terminal is connected to the ground of the 
amplifier, but the ground of the amplifier is not directly connected to the 
chassis ground nor to the protective earth conductor. If both ZL and ZH are 
very high, the input is said to be floating.

To minimize voltage-loading effects, the impedance between the two 
measuring terminals must be high enough. To avoid the influence of the 
common-mode voltage on the output voltage in a differential amplifier, 
ZC must be as high as possible and equal for each one of the input termi-
nals. Otherwise, Zo and ZC on one side, and Zo′ and ZC′ on the other side 

H H H

L C

ZiZi

Va
Va

Va

ZLZC

ZC

ZD

ZH

C

C

(a) (b) (c)

Figure 9.15 
Amplifiers classified according to their input: (a) single-ended, (b) differential, and (c) 
pseudodifferential. If ZL and ZH are very high, the input is floating.



Analog Input and Output	 249

constitute voltage dividers with different attenuation values, and a com-
mon-mode voltage from the signal source produces a differential voltage 
at the input of the amplifier. In pseudodifferential amplifiers, ZL and ZH 
must be as high as possible. Obviously, a differential or pseudodifferen-
tial signal cannot be connected to a single-ended input, as this one does 
not have enough input terminals. Furthermore, when connecting a single-
ended signal to a single-ended input, it is necessary to connect it with the 
correct polarities. This is less important in differential or pseudodifferen-
tial inputs. In any case, it is critical to ensure that common-mode voltages 
will not significantly contribute to the voltage being amplified.

When the input terminals of an amplifier are connected to ground, its 
output voltage is not zero as would be expected. Instead, the output is a 
dc signal whose value depends on the amplifier gain and the resistances 
between the inputs and ground. To analyze these effects, the amplifier 
can be modeled by adding a voltage source called offset voltage and a 
dc current source between each input terminal and ground. Figure 9.16 
shows the equivalent circuit when connecting a differential voltage to an 
instrumentation amplifier. The instrumentation amplifier is a differential 
amplifier with very high input impedances. The presence of the dc cur-
rent sources requires a low resistance path between each input and the 
ground. For this reason, the common terminal for the signal is normally 
connected to the amplifier ground. Furthermore, it is not possible to con-
nect the signal to the amplifier using just a capacitor in series with each 
terminal, because the capacitors would be charging and would end up 
saturating the amplifier.

When the input currents are low enough and the voltage supply is well 
filtered, the voltage at the output of the amplifier can be approximated as

	

v G v v V ea G d
c

io NLGCMRR
= +( ) + +









+1 ε

.

,	 (9.17)

Vc Vd/2

Vs–

Vs+

VaVd/2

Zcm

Zo

Z´o

Vio

Ip

In

+

+

+
IA

–

Figure 9.16 
Equivalent circuit when connecting a differential signal to an instrumentation amplifier. 
The signal and the amplifier are connected to the same ground.



250	 Microcontrollers: Fundamentals and Applications with PIC

with εG being the relative gain error, eNLG the error for nonlinear gain, 
and CMRR the common-mode rejection ratio. The CMRR is defined as the 
ratio between the output voltage produced by a differential input voltage 
and the output voltage when the same input voltage is applied in com-
mon mode. If the common-mode input impedances are not very high or 
they are unbalanced, the effective CMRR is lower than the CMRR for the 
amplifier itself. Gain errors and offset voltages normally found in instru-
mentation amplifiers do not preclude dynamic ranges of 100 dB or higher. 
However, they make it very difficult to achieve without calibration the 
required accuracy for systems with more than 10 bits. When calibration is 
used, the accuracy extends to 14 bits at low frequency or for narrowband 
signals. Wideband signals are limited to an accuracy of 12 bits. The gain of 
an amplifier decreases after a certain frequency. This frequency decreases 
when the gain increases. Figure 9.17 shows this effect for an instrumenta-
tion amplifier. For most amplifiers, the reduction in gain with the increase 
in frequency can be described as

	

G f G f
f jf

( )=
+0
a

a

,	 (9.18)

with G0 being the gain at low frequency and fa the cutoff frequency at 
–3 dB. From a practical point of view, this dependence means that given a 
maximum accepted error equal to ε, the maximum allowed frequency for 
a sine signal at the input is

	

f f fmax a a<
−
−

=
−

2
1

2
1

2ε ε
ε

ε
ε

.	 (9.19)

G
G´́ 0

f´́ a f´a fa
lg f

G´0

G0

Figure 9.17 
Relationship between gain and frequency for a typical instrumentation amplifier. The 
frequency at which the gain starts to decrease is lower for higher values of gain at low 
frequencies.



Analog Input and Output	 251

Example 9.5

A signal is amplified with an instrumentation amplifier with a gain-bandwidth 
(GBW) product equal to 1  MHz and a gain of 1000. What is the maximal 
frequency for the attenuation not to be perceived by a system with 12 bits of 
resolution?

With G = 1000, the –3 dB cutoff frequency is fa = 1 MHz/1000 = 1 kHz. 
Using Equation 9.19 with ε = 1 LSB/VFS,

	

f f<
−
= × =−

a kHz 2 Hz2
1

1 2 2212ε
ε

.

This is a very low frequency, but it is necessary to realize that –3 dB is an 
attenuation of 30% and the maximum attenuation accepted in this example is 
only 0.024%.

9.2.3 I nput Protections and Filters

The maximum voltage that can be directly applied to the input of any 
electronic device without causing damage is always limited, at least to less 
than the supplied voltage. The maximum current at the pins of the device 
is also limited, for example, to less than 20 mA for most of the PIC pins, 
and less than 10 mA or 1 mA for amplifiers and multiplexers, respectively,  
depending on their technology. For this reason, it is necessary to add pro-
tection circuits for the pins that accept connections to external devices. As 
shown in Figure 9.18, current limiters are connected in series, and voltage 
limiters are connected in parallel with the input to protect. For differential 
inputs it is necessary to add a current limiter in series with the low-input 
terminal and a common-mode voltage limiter between each input termi-
nal, and ground. When the voltage limiter is engaged, the voltage at the 
input of the device is constant and independent of the signal. Therefore, 
the device is not damaged, but information is lost.

Current limiter

Vo
lta

ge
 li

m
ite

r

Device to
protect

Figure 9.18 
Current limiters are connected in series with the input to protect, whereas voltage limiters 
are connected in parallel.



252	 Microcontrollers: Fundamentals and Applications with PIC

Current can be limited by linear resistors or nonlinear resistors such 
as positive temperature coefficient (PTC) thermistors. Voltage limiters 
employ Schottky or Zener diodes or metal oxide varistors (MOV) when 
the protection threshold is 15 V or higher. The 2PromTM devices from Tyco 
use both types of protections. The nominal power for current and voltage 
limiters is chosen depending on the maximal power that the source can 
deliver. If it is necessary, the protection can be implemented in two stages: 
the first for higher power and the second for lower power. Figure  9.19 
shows two examples of the first type and one example of the second type. 
The resistance of the series elements increases the loading effects when 
measuring voltage. The parasitic capacitance of the elements connected in 
parallel reduces the bandwidth and the common-mode input impedance 
in differential inputs.

Analog inputs also need interference filters because the amplitude of 
these interfering signals from other devices can be high enough to sat-
urate the amplifier’s input. These filters must be passive because active 
filters do not accept voltages beyond the voltage supply rails of their inte-
grated circuits. The series resistor of a first-order low-pass RC filter can be 
the current limiting resistor. To achieve a high enough capacitance, we can 
connect a capacitor in parallel with the voltage limiter. The maximum fre-
quency when accepting a relative error ε can be calculated with Equation 
9.19, with fa being the –3 dB filter cutoff frequency ( fa = 1/(2πRC)).

When the signal to be processed is connected to the ground in a place 
different than the ground connector for the power supply, the voltage 
difference between these two points can be higher than the supply volt-
age. This situation is very common in industrial environments and when 
measuring in systems with devices far away from one another. In these 
cases, the voltage limiters would be constantly engaged and information 
could not be acquired. This problem can be solved by breaking the ohmic 

1 kΩ, 1W

(a) (b) (c)

MOV

1–10 kΩ

Op amp
IA
AMUX1–100 kΩ

R1
D1

Vs+(VDD)

Vs–(VSS)

D2

R2

15 V
+t°

Figure 9.19 
First-level protection for power values around 1 W. (a) Power resistor and two Zener diodes. 
(b) A PTC resistor and a varistor (MOV). (c) Second-level protection for extremely vulnera-
ble components: R1 is not necessary if there is a first-level protection stage; R2 is only needed 
if the voltage drop across the Schottky diodes (0.3 V) is still dangerous for the device to 
protect.



Analog Input and Output	 253

continuity between the signal and the amplifier using a linear isolator or 
an isolation amplifier for the analog signal. Alternatively, it is also possible 
to digitize the signal with a system whose voltage common terminal is not 
connected to ground and transmit the digital signal using optocouplers or 
other digital isolators. In any case, it is necessary to break the ohmic con-
tinuity for both the signal circuit and the power supply circuit, as shown 
in Figure 9.20.

9.2.4  Analog Multiplexers

An analog multiplexer is a circuit built from a set of analog switches with 
a common output pin. They are activated in such a way that at any given 
time, only one of the inputs is connected to the output. Figure 9.21 shows 
the structure of a multiplexer for single-ended signals and one for differ-
ential signals. In multiplexers for differential signals, two switches must 
close at the same time. The multiplexers found in some microcontrollers 
allow for measuring the difference between any two signals, not only pre-
determined pairs of signals, as shown in Figure 9.21b.

The switches of an ideal multiplexer have zero resistance when closed 
and infinite resistance when open, thus making input and output totally 
isolated. The switches in real multiplexers are made of CMOS transis-
tors that have a resistance different than zero when closed (RON) and a 
finite capacitance (CDS, COFF, CISO) between input and output. RON creates 
an additional voltage loading effect (additional because it adds to that 
of the output resistance of the source) called insertion loss. This value is 
sometimes expressed in decibels for a predetermined load resistance 
that should be the equivalent input resistance for the following stage. 
Multiplexers that incorporate an additional resistance for overcur-
rent protection in series with each switch have higher insertion losses. 

Power supply

G1 G2

Power supply

Figure 9.20 
When the voltage difference between the two ground connections is too high, it is neces-
sary to use isolation methods for the signal and the power supply. Isolation will prevent 
the excessive voltage difference between grounds to originate a dangerous current in the 
circuit.



254	 Microcontrollers: Fundamentals and Applications with PIC

Furthermore, RON and Ro introduce a delay when switching between 
channels because they limit the charging current for the equivalent 
capacitance connected at the output of the multiplexer. With the equiv-
alent circuit from Figure 9.22, assuming a low-frequency signal at the 
input of the switch, when the switch is closed, the output voltage is:

	
v t V e t
L o( )= −( )−1 τ

,	 (9.20)

with τ = [(Ro + RON) || RL] CL. If the relative difference between the output 
voltage at a certain time and its final value has to be lower than ε, it is 
necessary to wait a certain time (tε) after closing the switch. This time is 
given by

Ro

Vo

RON

CL RL vL

Vo

vL(t)
S D

0 τ 2τ 3τ t

Figure 9.22 
Equivalent circuit for an analog switch that closes, and evolution of the output voltage. CL is 
the equivalent capacitance between the output of the multiplexer and ground. It includes the 
multiplexer output capacity and the equivalent input capacitance of the following stage.

S1
S2
S3
S4
S5
S6
S7
S8

S1a
S2a
S3a
S4a
S1b
S2b
S3b
S4b

WRRS

A2 A1 A0 EN
(a) (b)

A1 A0 EN

Decoder Decoder
Latches

D

Da

Db

RSWR

Figure 9.21 
Functional structure for an analog multiplexer for (a) single-ended signals and (b) differ-
ential signals.



Analog Input and Output	 255

	
tε τ ε=− ln . 	 (9.21)

This time limits the maximum velocity at which the channels can be 
scanned. This time is not listed in the multiplexer’s data sheet because it 
depends on external factors, such as Ro and CL.

Example 9.6

Consider a multiplexer with each channel protected against currents with an 
equivalent channel resistance of 1 kΩ, and with an output connected to a load 
of about 100 pF and a very high resistance. Calculate the time necessary to 
wait after switching one channel for the output to be measured correctly with 
a 12-bit system.

Using Equation 9.21 with τ = 1  kΩ × 100 pF = 100 ns and ε  = 1LSB/212 
yields

	
tε τ ε=− = −( ) =−ln ln100 2 83212ns ns

This time is much higher than the switching times between channels in a com-
mon multiplexer.

The finite isolation in the multiplexer switches produces static crosstalk: 
when a switch is open, part of the signal at its input is transferred to the 
output. The output should only have the signal whose switch is closed, 
and instead it receives contributions from the other signals. As shown in 
the circuit from Figure 9.23, as the frequency of the signal connected to 
the open switches increases and the resistance of channel 1 (Ri1 and RON1) 
increases, the crosstalk of channel 2 over channel 1 also increases.

Another limitation from multiplexers is the time elapsed between giving 
an order to change a channel and when the channel is effectively closed. 
This is called switching time. Also, the signals for controlling channels can 
produce spurious voltages at the output. When switching channels there 
is a short time interval in which none of the channels are closed, causing 
the output to hold the voltage that it had when the previous channel was 
selected. The throughput rate specified by the manufacturer sometimes 
refers to the ideal situation of having the same continuous voltage applied 
to each channel and, therefore, the only limiting effect is the output set-
tling time without additional delays or evaluating the effects of crosstalk 
that occur when switching ac signals.

9.2.5  Anti-Alias Filters

To avoid the creation of alias signals when sampling, it is necessary that 
the amplitude of any signal at a frequency equal to or higher than the 



256	 Microcontrollers: Fundamentals and Applications with PIC

Nyquist frequency be unnoticed by the A/D converter. The circuits that 
discriminate signals depending on their frequency are called filters. Filters 
that attenuate high-frequency signals, as is required to avoid alias sig-
nals when sampling, are called low-pass filters. An ideal filter such as the 
one shown in Figure 9.24a totally eliminates undesired signals without 
modifying the frequency or the phase of the signals to pass. In a real fil-
ter (Figure 9.24b) the attenuation in the rejected band is limited and the 
response in the pass band is not constant with the frequency. The transi-
tion between these two regions is not abrupt but slow. Furthermore, the 
phase change that is introduced may not be proportional to the frequency 
resulting in waveform distortion. An ideal filter would respond imme-
diately to an abrupt change in amplitude without overshooting. A real 
filter has a frequency response that is very different from the frequency 
response of an ideal filter.

H(f )

fpfc f fr f

H(f )
dB

0

0

(a) (b)

A

Rejected band Pass band Transition
band

Rejected
band

Pass band

Figure 9.24 
Frequency response for a low-pass filter: (a) ideal and (b) real.

Ri1

Ri2

vi1

vi2

RON1

CDS2

CL RL

vL

Figure 9.23 
Equivalent circuit used to analyze static crosstalk in an analog multiplexer. When channel 1 
is selected, channel 2 and the rest of the open channels influence the output voltage because 
the isolation of the open switches is finite.



Analog Input and Output	 257

Filters can be characterized by their order (n). The attenuation of 
common filters increases in 20n (dB) as the frequency increases in one 
decade. The attenuation in the transition band depends on the type of 
filter selected, which receives a specific name depending on the type of 
polynomial selected for the denominator of its transfer characteristic. The 
most common filters are Butterworth, Chebyshev, and Bessel. Butterworth 
filters offer the flattest response in the pass band. Chebyshev filters offer 
higher attenuation in the transition band, but show amplitude ripple in the 
pass band and a nonlinear phase shift. Bessel filters have an almost linear 
phase shift and do not have overshoot for step inputs, but they have an 
increased attenuation in the pass band and lower attenuation in the transi-
tion band. The designer needs to select the type of filter depending on the 
specifications given by the application. Once this has been selected, there 
are several programs to determine the order of the filter as a function of 
the –3 dB cutoff frequency in the band pass, the sampling frequency, and 
the desired signal-to-noise ratio. Several different circuits may be used 
to implement the filter. Filter realization is also supported by software 
programs such as FilterWizard® (Analog Devices), FilterCAD® (Linear 
Technologies), Filterlab® (Microchip), or FilterPro® (Texas Instruments).

Example 9.7

Design an anti-alias filter for a signal with a –3 dB bandwidth of 70 Hz and 
a signal-to-noise ratio of 40 dB when it is sampled at 1500 Hz with a 12-bit 
converter.

The cutoff frequency of the filter is chosen to be 70 Hz (in order not to mod-
ify the signal). Using the “Anti-Aliasing Wizard” tool from Filterlab®, introduc-
ing the sampling frequency, the number of bits, and the input signal-to-noise 
ratio, the result is a second-order filter, type Butterworth with an attenuation of 
41.3 dB at 750 Hz (1500 Hz/2).

As an alternative method, for the noise amplitude to be lower than 1 LSB at 
half of the sampling frequency in a 12-bit system, it is necessary that the noise 
is approximately 72 dB below the signal, assuming a full range signal. Because 
the noise at the input is already 40 dB below the signal, only 32 dB are needed 
additionally. Choosing a cutoff frequency of 70 Hz, the attenuation one decade 
later (700 Hz) will be 20n (dB). Using n = 2, the attenuation at 750 Hz will be 
higher than the minimum required attenuation.

9.2.6  Sample-and-Hold Amplifier

Ideally, sampling a signal requires measuring its instantaneous value at 
a specific instance of time. In reality, sampling takes some time, different 
than zero. This time needs to be short enough to ensure that the A/D con-
verter will not detect the change in the value of the signal. The maximal 
time allowed for sampling decreases when the slope of the signal to mea-
sure increases and the number of bits in the A/D converter increases.



258	 Microcontrollers: Fundamentals and Applications with PIC

Example 9.8

Sampling a 1 kHz sine signal using a 12-bit A/D converter. The change in the 
signal during the sampling time must not exceed the maximum quantization 
error. Find the maximum sampling time when the sampling occurs at the peak 
of the signal and when it crosses zero.

When sampling close to the signal peak value, the condition to meet is

	

∆V A A ft A
= − +









< =sin π π

2
2 1 2

212m LSB ,

from which we can find

	

π π

π

2
2 1 5395

0 03125
2 10

5
3

+ >

<
( )

≈

ft

t

s

s

rad

s µs

.

. .

This is a relatively large value of time. However, when sampling at the zero 
crossing, the derivate of the sine signal v(t) = Asin(2πft) at that point is 2πfA. If 
we need for the change in voltage ΔV during a time Δt = ts (sampling time) to be 
lower than 1 LSB, the condition to meet is

	

∆V
t

fA
t

A

t

s s

s

LSB

kHz

= < =

<
( )

=

2 1 2
2

1
2 1

7 8

12

12

π

π
. nns ,

which, as we can see, is a very short time.

If the A/D converter had to digitize (quantify and codify) the input 
signal in the short amount of time allowed by the sampling process, the 
resolution obtained would be extremely poor. For this reason, an addi-
tional circuit is placed before the A/D converter: the sample-and-hold 
amplifier (SHA). Figure 9.25 shows the structure of an SHA. It consists 
of a switch that closes to charge a holding capacitor (CH) to the value of 
the input voltage. The amplifier before the switch has high input imped-
ance; the amplifier after the switch has a unity gain and is used to avoid 
the capacitor discharging during the conversion. Sampling converters inte-
grate the SHA.

When the SHA is sampling, it should behave as a unity-gain amplifier. 
When it is holding, the voltage across the capacitor should be constant. 



Analog Input and Output	 259

However, the input currents of the output amplifier, the leakage current 
for the switch, and the leakage from the capacitor itself slowly discharge 
the capacitor. The droop rate is

	

dv
dt

i
C

c d

H
=

,	 (9.22)

with id being the discharge current (as a result of all the leakage currents 
in the circuit). The discharge process is slower when CH increases. During 
the transition from holding to sampling, the capacitor needs some time 
to charge to the value of the input voltage. This time is called acquisition 
time. Acquisition time decreases if CH decreases. There is, therefore, a 
trade-off between drop rate and acquisition time in choosing the value 
of CH. If the conversion time for the A/D converter is short enough, it is 
possible to use the track-and-hold mode. Instead of taking a sample during 
a very brief period of time and holding its value during a relatively long 
period of time, in track-and-hold mode the switch is closed for a longer 
period of time, which allows for the capacitor to charge and follow the 
changes in the input voltage. At a specific moment, the switch opens and 
the voltage in the capacitor is digitized during a brief period of time. The 
time that the switch takes to open from when the order is given to the 
moment in which the capacitor disconnects itself from the input is called 
aperture delay. This introduces errors in the time at which the sample is 
really taken because the aperture delay is not constant but subject to 
erratic and brief changes.

9.2.7  A/D Converters

The A/D converter integrated in microcontrollers, and in most of the 
peripherals with A/D converters, is based on the successive approxima-
tions algorithm shown in Figure 9.26. The input voltage (vx) is first com-
pared with half of the full-scale voltage (VFS = Vref = 2N × Q, for an N bit 
A/D converter). If vx > VFS/2, the most significant bit (MSB) is set to 1 and 
the compare voltage is increased in VFS/4. If vx < VFS/2, the MSB is set to 0 

Driver

Control S/H

CH VoVi

Figure 9.25 
Functional structure for a sample-and-hold amplifier. The SHA normally integrated in 
microcontrollers do not have the voltage buffers.



260	 Microcontrollers: Fundamentals and Applications with PIC

and the new compare voltage is VFS/4. This gives the value of the first bit. 
To decide the value of the second MSB, the A/D converter proceeds in a 
similar way: If the result of the second compare is positive (vx > Vcompare), 
the bit is set to 1, otherwise it is set to 0. The third compare level will be 
the previous level plus or minus VFS/8 and so on. During this conversion 
process, vx must be kept constant. The conversion time will be longer 
as the number of bits (N) increases. The compare voltages are obtained 
through a digital-to-analog (D/A) converter (Section 9.6.1).

The relationship between the input voltage for the A/D converter (vx) 
and the output code (D) is described by the transfer characteristic shown 
in Figure 9.3. Some converters are designed with their transfer character-
istic shifted to the left in Q/2 units, as shown by the discontinuous line 
in Figure 9.27. This means that the thresholds for the transition between 
different codes are multiples of Q/2 instead of multiples of Q. In reality, 
the transition between output codes does not always occur for the same 
input voltage; instead it sometimes occurs for voltages slightly higher, and 
at other times for voltages slightly lower. The range of voltages that pro-
duce the same output code is called code width. The transition threshold is 
the voltage that has a 50% probability that the transition may occur for 
a higher or a lower voltage. In an ideal A/D converter, the code width is 
1 LSB for all the codes, and the line that joins the centers of the steps in the 
transfer characteristic is a straight line with a slope equal to 1 that crosses 
the origin of the axes.

In a real A/D converter, the line through the center of the steps can 
have an offset error and a gain error. The effect of the offset error is to shift 

D/A

+
– Successive

approximation
register

Output bits
Input D/A

Output D/A

1
10000
10000

0
11000
10000

1
10100
10100

1 t
10101
10101

0
10110
10100

D

Vref

VFS

VFS/2
VFS/8

VFS/32

VFS/16VFS/4

vx

vx

Figure 9.26 
Functional structure of a successive approximation D/A converter and decision process. 
VFS, full-scale voltage.



Analog Input and Output	 261

all the transition thresholds in the same direction and by the same value 
(Figure 9.27a). The effect of gain error, once the offset error has been cor-
rected, is that the slope of the line is different from 1 (Figure 9.27b).

It may also happen that the code width may change between codes. 
This situation is called differential nonlinearity (DNL). DNL is defined as 
the difference between each code width and the ideal code width of 1 
LSB. DNL can be positive or negative. If DNL = –1, it means that either 
the previous code never happens, or DNL is specified in some extreme 
conditions in which the previous code would never happen. The global 
effect of DNL is called integral nonlinearity (INL). INL is a measure of the 
separation between the straight line that crosses the center of the steps 
compared to the ideal unity slope line once the zero and gain errors have 
been corrected. If zero and gain errors are corrected by calibration, INL 
is the factor that limits the accuracy in determining the input voltage that 
has produced the observed output code. Without using calibration, it is 
limited by the absolute error that is the sum of the zero error, gain error, 
and nonlinearity error.

For ac signals it is important to know the noise and distortion intro-
duced by the A/D converter. In an ideal A/D converter, the samples would 
only be affected by the quantization error. This is a way of describing the 
uncertainty in the rms input voltage because all the voltages in the same 
quantization interval will produce the same output code. Its rms value is 
Q / 12 . The rms noise value at the output of a real A/D converter, mea-
sured using a standardized process, is always higher. This leads to the 
definition of the effective number of bits (ENOB) as

111

110

Co
de

Co
de

Gain
error

Zero error 101

100

011

010

001

000

111

110

101

100

011

010

001

000
Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q

vin
Q 2Q 3Q 4Q 5Q

(a) (b)

6Q 7Q 8Q
vin

Figure 9.27 
Transfer characteristic for an A/D converter with (a) zero error and (b) gain error. The ideal 
transfer characteristic is the bold broken line.



262	 Microcontrollers: Fundamentals and Applications with PIC

	

ENOB lb A/D noise lb A/D noise
FS

= − = −N
Q

N
V

N
/ /12

2
122

12
= lb

A/D noise
FSV / .	 (9.23)

In general, for the same value of N, the ENOB is higher for a peripheral 
A/D than for the A/D integrated in the microcontroller.

The configuration of the input terminals in an A/D converter can be 
described using the same terms that described the inputs of amplifiers 
(Section 9.2.2). However, in this case, the configuration is linked to the 
output codes. If the input is single ended or pseudodifferential, only posi-
tive voltages are allowed. In this case, the output code is unipolar straight 
binary. If the input is differential, it accepts positive and negative values 
referred to the system ground. In this case, the output code is normally a 
2-complement binary code because it is easier for numerical calculations. 
The full-scale (input) range (FSR) is equal to Vref for single-ended inputs and 
2Vref for differential inputs. For a given number of bits (N), the quantization 
interval for converters with differential input has double the code width 
than that for single-ended input converters.

According to Equation 9.1, the output of the A/D converter represents 
the relationship (ratio) between the input voltage (vx) and the reference 
voltage (Vref). Therefore, the uncertainty in Vref due to its tolerance, and 
time and temperature variations will be directly reflected at the output. 
However, if the input voltage vx

 is produced by a sensor powered by the 
reference voltage such that vx = xVref with x proportional to the quantity 
to measure, and the reference voltage is the same as for the A/D con-
verter, the output of the A/D will not be affected by the uncertainty in Vref. 
This approach is called ratio measurement as opposed to absolute measure-
ment when using an independent reference voltage. But it is important to 
remember that any A/D converter always measures a voltage ratio rather 
than an absolute voltage.

9.3 � The 10-Bit A/D Converter Module 
in PIC Microcontrollers

9.3.1  Architecture of the Conversion Module

Medium-end PIC microcontrollers use successive approximation A/D 
converters, normally of 10 bits. A simplified internal structure of these 
A/D converters is shown in Figure  9.28. The main components of this 
module are:



Analog Input and Output	 263

Analog multiplexer with up to eight input channels•	

Sample and hold amplifier without input or output buffers•	

10-bit successive approximation A/D converter•	

Registers to control the module (ADCON0 and ADCON1), and reg-•	
isters to store the result of the conversion (ADRESH and ADRESL)

This module can have up to eight analog inputs that are available as alter-
native functions in the parallel port inputs. The number of analog inputs 
depends on the specific model of the PIC. For example, the PIC16F873 has 
five analog inputs that are available in five pins in parallel port A (RA0/
AN0, RA1/AN1, RA2/AN2/VREF–, RA3/AN3/VREF+, and RA5/AN4). 
PICs with more than five analog inputs, such as the PIC16F874 that has 
eight analog inputs, use three pins from port E for the analog inputs AN5, 
AN6, and AN7. The selection of channels is done with bits CHS2:CHS0 
from the ADCON0 register.

The sample-and-hold amplifier consists of a capacitor (without input 
or output buffers) that starts to charge when the multiplexer selects the 
desired channel. The voltage in the capacitor follows the evolution of the 
input voltage (track mode). When the conversion order is given, the capacitor 
is disconnected from the analog input and the conversion process starts. 

ADRESH ADRESL

Registers with the result of the
A/D conversion

(10) ADC SHA

OSCPrescalerClock

Control registers

ADCON1 ADCON0

CHS2:CHS0
ADCS1:ADCS0

PCFG3:PCFG0

VSS

VREF.

VDD

VREF+

PCFG3:PCFG0
AMUX AN7

AN6
AN5
AN4
AN3
AN2
AN1
AN0

DONE# GO

Figure 9.28 
Functional blocks for the A/D converter in medium-end PIC microcontrollers. A/D, succes-
sive approximation analog-to-digital converter; SHA, sample-and-hold amplifier; AMUX, 
analog multiplexer.



264	 Microcontrollers: Fundamentals and Applications with PIC

The result of the conversion is stored in registers ADRESH and ADRESL. 
The set of registers has 16 bits and the result of the conversion is a 10-bit 
value. Hence, the result of the conversion may be aligned to the right or 
to the left, as shown in Figure 9.29. Storing the result of the conversion left 
aligned (Figure 9.29a) is very appropriate to operate the A/D converter as 
an 8-bit converter, with the result stored in the ADRESH register.

The reference voltage for the A/D converter can be the microcontroller’s 
voltage supply or an external voltage applied between pins AN3/VREF+ 
and AN2/VREF–. The selection is done with bits PCFG3:PCFG0 in the 
ADCON1 register. The default selection uses the microcontroller’s supply 
voltage. The A/D conversions are synchronized with a clock signal. This 
signal can come from the main oscillator clock through a programmable 
prescaler or by an internal RC oscillator working at a fixed frequency. This 
internal RC oscillator is not shown in Figure 9.28. Bits ADCS1 and ADCS0 
in the ADCON0 register are used to select the source for the clock and 
program the prescaler if the clock is taken from the main oscillator. For 
the A/D converter to continue working while the microcontroller is in 
sleep mode, it is necessary to select the internal RC oscillator.

The conversion is started by activating the control bit GO. When the con-
version is finished, the status bit DONE# is activated. In reality, these two 
flags are implemented using the same bit: GO/DONE# from the ADCON0 
register, as shown in Figure 9.30. The programmer must set this bit to 1 to 
start the conversion. The bit is automatically set to 0 when the conversion 
is finished and the result is stored in ADRESH and ADRESL. When the 
conversion is finished, the bit ADIF in the PIR register is also activated to 
request an interrupt. If bit ADIE in the PIE register is active and the global 
interrupt system is enabled (bit GIE in the INTON register is 1), the inter-
rupt request becomes effective.

ADRESH

(a)

(b)

ADRESH
ADFM 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0ADFM
0

1

ADRESL

ADRESL

Figure 9.29 
The result of the A/D conversion can be read in the ADRESH and ADRESL registers with a 
format specified by bit ADFM in the ADCON1 register. (a) Bit ADFM = 0, resulting in a left 
alignment. The 8 most significant bits are stored in ADRESH. (b) Bit ADFM = 1, resulting in 
a right alignment. The 8 least significant bits are stored in ADRESL.



Analog Input and Output	 265

Figure 9.30 shows the bits in the special function registers ADCON0 and 
ADCON1 in a PIC16F783. These bits are used to control its A/D conver-
sion module. Bits ADCS1:ADCS0 in the ADCON0 register select the clock 
source for the converter and its frequency, as shown in table 9.1. The ana-
log input is selected with bits CHS2, CHS1, and CHS0. GO/DONE# is the 
control/status bit to start the conversion and notify when it is finished. 
With bit ADON = 1, the A/D conversion module in the microcontroller is 
enabled.

Bit ADFM in the ADCON1 register determines the alignment (right or 
left) for the conversion result stored in the ADRESH and ADRESL regis-
ters. Bits PCFG3:PCFG0 configure the pins of the microcontroller used by 
the A/D module as analog inputs for the converter or as digital outputs 
for the corresponding digital ports. Table 9.2 shows the values of these bits 
for a PIC16F783 microcontroller. After a reset, bits PCFG3:PCFG0 are set 
to 0 and therefore pins RA5, RA5:RA0 are assigned to the A/D conversion 
module. To assign them to parallel port A, it is necessary to program the 
appropriate values in the ADCON1 register.

ADCON1

ADCON0
7

ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE# - ADON
6 5 4 3 2 1 0

7
ADFM - - - PCFG3 PCFG2 PCFG1 PCFG0

6 5 4 3 2 1 0

Figure 9.30 
Registers ADCON0 and ADCON1 in a PIC16F873.

Table 9.1

Selection of Clock Source and Frequency for the A/D Converter Using Bits 
ADCS1:ADCS0 from the ADCON0 Register

ADCS1:ADCS0 Clock Source
Frequency of the A/D 

Clock

00 Main oscillator FOSC/2

01 Main oscillator FOSC/8

10 Main oscillator FOSC/32

11 Internal RC oscillator 167 kHz to 500 kHz

Note: 	 Fosc is the frequency of the main oscillator in the microcontroller. The frequency of 
the internal RC oscillator is fixed with a typical value of 250 kHz, although it can 
vary between 167 kHz and 500 kHz.



266	 Microcontrollers: Fundamentals and Applications with PIC

9.3.2  A/D Conversion Timing

An analog signal is digitized in two steps: (1) the sample-and-hold pro-
cess and (2) the A/D conversion process. Each one of these steps needs a 
specific amount of time. In medium-end PICs, the holding capacitor has 
a value of 120 pF. The time needed for this capacitor to become charged 
is called acquisition time (TACQ). After the capacitor is charged, the 10-bit 
conversion can start. The time needed for the conversion is called conver-
sion time (TCONV; Figure 9.31).

The manufacturer specifies an acquisition time for medium-end PICs 
between 10 μs and 20 μs:

	
10 20µs µs.ADQ≤ ≤T 	 (9.24)

The wide variation in the acquisition time is due to the lack of the 
input buffer shown in Figure 9.25. This makes the acquisition time highly 
dependent on the output (internal) resistance (Rs) of the source signal. The 
manufacturer recommends that Rs always be lower than 10 kΩ. With Rs = 
10 kΩ, TACQ is 20 µs; whereas with Rs = 50 Ω, TACQ is 10 µs.

Table 9.2

Assignment of Functions to Input Pins in Port A in a PIC16F783 Using the 
PCFG3:PCFG0 Bits from the ADCON1 Register

PCFG3: 
PCFG0

AN4
RA5

AN3
RA3

AN2
RA2

AN1
RA1

AN0
RA0 VREF+ VREF–

Number 
of 

Analog/
Digital 

Channels

00x0 A A A A A VDD VSS 5/0

1001 A A A A A VDD VSS 5/0

00x1 A VREF+ A A A RA3 VSS 4/0

1010 A VREF+ A A A RA3 VSS 4/0

1x00 A VREF+ VREF– A A RA3 RA2 3/0

1011 A VREF+ VREF– A A RA3 RA2 3/0

0100 D A D A A VDD VSS 3/2

0101 D VREF+ D A A RA3 VSS 2/2

1101 D VREF+ VREF– A A RA3 RA2 2/1

1110 D D D D A VDD VSS 1/4

1111 D VREF+ VREF– D A RA3 RA2 1/2

011x D D D D D VDD VSS 0/5

Note: 	 A, analog input; D, digital input.



Analog Input and Output	 267

The manufacturer also specifies that the conversion time for the 10-bit 
A/D converter in medium-end PICs is

	
T TCONV AD= ×11 5. ,	 (9.25)

with TAD being the conversion time for a bit.
For the converter to operate correctly, the manufacturer recommends

	 TAD > 1.6 µs.	 (9.26)

With this value, the conversion time for a 10-bit A/D converter is equal to 
18.4 µs.

The value of TAD is equal to the period of the clock in the A/D converter. 
Because the clock for the A/D converter can be taken from the main oscil-
lator, the frequency of this oscillator must be chosen so that it meets the 
condition from Equation 9.26. Table  9.3 shows the maximum frequency 
value for the main oscillator in the microcontroller for the different possible 
configurations.

The digitizing time for the analog signal (TDIG) is the sum of the acquisi-
tion and conversion time:

	 TDIG = TACQ + TCONV.	 (9.27)

Based on the previous data, it can be seen that for these PIC microcon-
trollers the lowest value for TDIG ranges between 20.4 µs and 38.4 µs.

When an analog signal is digitized periodically with a sampling period 
Ts, the sampling frequency is Fs = 1/Ts. In this case, Ts must be equal to 
or higher than the time needed for the digitizing process. The manufac-
turer recommends waiting 2TAD seconds before starting a new conversion. 
Therefore,

	 Ts ≥ (TDIG + 2 TAD).	 (9.28)

TAD

TDIG

TACQ TCONV

Time

Figure 9.31 
Times involved in the digitizing process in the A/D module. TACQ, acquisition time; TAD, 
time to convert one bit; TDIG, overall data conversion time. TACQ ranges between 10 µs and 
20 µs depending on the value of the output resistance for the source. TAD must be longer 
than 1.6 µs. The overall data conversion time is 11.5 times longer than TAD.



268	 Microcontrollers: Fundamentals and Applications with PIC

This expression can be rearranged to find the limit of the sampling fre-
quency as

	

F
T TS
DIG AD

≤
+
1
2 .	 (9.29)

Example 9.9

Digitizing time for a 10-bit A/D conversion in a PIC16F783 with a main oscil-
lator at 4 MHz.

With Fosc = 4 MHz, and considering Table 9.3, the configuration that is chosen 
is ADCS1:ADCS0 = 01, resulting in TAD = 8/Fosc = 2.0 μs. This value meets the 
requirements from Equation 9.26. The 10-bit A/D conversion time is therefore

	 TCONV = 11.5 × TAD = 11.5 × 2.0 μs = 23 μs.

Considering the worst case for the acquisition time (TACQ = 20 μs) that cor-
responds to a signal with a source resistance of 10 kΩ, the resulting sampling 
time is

	 TDIG = TACQ + TCONV = 20 μs + 23 μs = 43 μs.

If the A/D conversion is carried out periodically, the sampling frequency 
must be equal to or less than 1/(TDIG + TAD), resulting in Fs ≤ 22.222 kHz.

Considering the best case for the acquisition time (TACQ = 10 μs) that cor-
responds to a signal with a source resistance of 50 Ω, the resulting sampling 
time is

	 TDIG = TACQ + TCONV = 10 μs + 23 μs = 33 μs.

This results in a maximum sampling frequency of 28.571 kHz.

Table 9.3

Maximal FOSC in the Microcontroller in Order to Have TAD =1.6 μs for the 
Different Possible Configurations.

ADCS1:ADCS0 in 
ADCON0 TAD FOSC

FOSC

(for TAD = 1.6 µs)

00 2/FOSC 2/TAD 1.25 MHz

01 8/FOSC 8/TAD 5 MHz

10 32/FOSC 32/TAD 20 MHz

11 2 µs to 6 µs — —



Analog Input and Output	 269

9.3.3  A/D Conversion Module Programming

The A/D conversion module can be serviced by using the polling or inter-
rupt techniques. The steps necessary to measure analog voltages in an 
input channel are described in the following.

	 1.	Configure the A/D conversion module.

Configure the pins in ports A and C as analog inputs, reference •	
voltage, or digital I/O storing the appropriate values in bits 
PCFG3:PCFG0 in the ADCON1, TRISA, and TRISC registers.

Configure the format for the conversion result with bit ADFB •	
in register ADCON1.

Select the source of the clock used by the conversion module •	
and the bit conversion time (TAD) using bits ADCS1:ADCS0 in 
the ADCON0 register.

Select the analog input channel using bits CHS2:CHS0 from •	
ADCON0.

Activate the A/D module with bit ADON from the ADCON0 •	
register.

	 2.	 If the A/D module is serviced by interrupts, configure the inter-
rupt in the A/D module.

Set bit ADIF in the PIR register to 0. This is the interrupt flag.•	

Enable the A/D converter interrupt by setting bit ADIE in the •	
PIE register to 1.

Enable the general interrupt system in the PIC by setting bit •	
GIE in the INTCON register to 1.

	 3.	Wait the required acquisition time (TACQ).

	 4.	Start the A/D conversion by setting to 1 bit GO/DONE# in the 
ADCON0 register.

	 5.	Wait for the A/D conversion to be complete:

If using polling service: Wait for the bit GO/DONE# in the •	
ADCON0 register to be 0 or the bit ADIF in the PIR register 
to be 1.

If using interrupt service: Wait for the A/D converter interrupt.•	

	 6.	Read the result of the conversion in the ADRESH and ADRESL 
registers. Set bit ADIF to 0 if needed.

	 7.	To acquire another sample, repeat steps 1 or 2 as needed. Wait for 
at least 2TAD before acquiring a new sample.

Example 9.10 shows how to program the A/D module to acquire analog 
signals using polling input.



270	 Microcontrollers: Fundamentals and Applications with PIC

Example 9.10

Programming the A/D conversion module in a PIC16F873 with its main oscilla-
tor at 4 MHz to acquire the signal from any of its five analog input channels.

The process consists of three parts:

	 1.	 Initialization module: Label Init that configures port A inputs as analog 
inputs and establishes the format for the result of the A/D conversion.

	 2.	Subroutine channel: Configures the word to store in the ADCON0 regis-
ter depending on the channel to measure.

	 3.	Subroutine measure: Receives in register W the number of the channel 
to measure and return, also in W, the result of the measure. This subrou-
tine gives the number of the channel to measure to the subroutine chan-
nel and receives the appropriate word to store in the ADCON0 register. 
After the configuration, it generates a delay for the recommended acqui-
sition time. Once this time has elapsed, it starts the A/D conversion by 
setting the bit GO/DONE# in ADCON0 to 1. The subroutine waits until 
this bit is set to 0, thus indicating that the A/D conversion has finished. 
Finally it returns the 8 MSBs of the result in register W.

			   ; Programming the 10 bit A/D converter.
			   ; Fosc = 4 MHz
					     List			   p = 16F873
					     include	 «P16F873.INC»	
			   AUX	 equ		  0x20					     ; Auxiliary variable.
					     org		  0x00
					     goto		  Init
					     org		  0x04
					     retfie
			   Init:
					     BSF			   STATUS, RP0		 ; Select bank 1.
					     movlw		 0xff					     ; W with ffh.
					     movwf		 TRISA					    ; PORTA as input.
					     clrf 		 ADCON1 				    ; All inputs in PORTA are  
														              ; analog and
														              ; result of conversion aligned 
														              ;  left.
			   ;
			   ; Write here main program.
			   ;
			   ; Subroutine Measure:
			   ; This subroutine carries out the 10-bit A/D conversion for  
			   ; the analog channel.
			   ; The subroutine selects the desired channel and waits until  
			   ; the result is ready
			   ; in registers ADRESH and ADRESL. It returns in W the 8 most  
			   ; significant bits
			   ; of the conversion (value of ADRESH).
			   ; This subroutine assumes a bit conversion time Tad= 2  
			   ; microseconds and
			   ; a main clock of 4 MHz for the PIC
			   ; Inputs: in W the number of the channel to measure.
			   ; Outputs: in W the 8 bit result of the  measurement.
			   ;
			   Measure:
					     nop								        ; Wait 2Tad = 4 microseconds
					     nop



Analog Input and Output	 271

					     nop
					     nop
					     bcf 		  STATUS, RP0			  ; Select bank 0.
					     call		  Channel				    ; Select the word to store in
 					     movwf 	 ADCON0				    ; ADCON0 depending on the  
														              ; channel.
					     call 		 Del10us				    ; Wait for an acquisition time  
														              ; of 10 microseconds.
					     bsf 		  ADCON0, GO			  ; Start the A/D conversion.
			   Measure01:
					     btfsc		 ADCON0, GO			  ; Conversion finished?
					     goto		  Measure01			   ; No – continue waiting.
					     movf		  ADRESH, W			   ; Yes – Store results in W.
					     bcf		  ADCON0, ADON		  ; Disable the A/D converter.
					     return							       ; Return.
			   ; Subroutine Channel.
			   ; This subroutine receives in W the number of the channel and  
			   ; returns in W
			   ; the word to store in ADCON0 to enable the A/D converter,
			   ; select the input channel and choose the clock forthe A/D  
			   ; conversion module.
			   ; The clock in the A/D conversion module has been selected at 
			   ; Fosc/8.
			   ; With Fosc = 4 MHz, the bit conversion time is Tad = 2  
			   ; microseconds.
			   ;
			   Channel:
					     addwf		 PCL, f
					     retlw		 41h					     ; Word to select channel 0.
					     retlw		 49h					     ; Word to select channel 1.
					     retlw		 51h					     ; Word to select channel 2.
					     retlw		 59h					     ; Word to select channel 3.
					     retlw	61h						      ; Word to select channel 4.
			   ; Subroutine Del10us.
			   ; This subroutine delays for more than 10 microseconds.
			   ;
			   Del10us:
					     movlw		 .3
					     movwf		 AUX
			   Del01:
					     decfsz	 AUX
					     goto		  Del01
					     return
					     end

9.4  Calibration

To correctly interpret the code obtained in the A/D conversion in terms 
of the input voltage, it is necessary to know the real transfer characteristic 
between the front-end and the A/D converter. Ideally, if the quantization 
is excluded, this function is a straight line with a slope equal to the gain 
of the system:

	 D = G × vx + V0.	 (9.30)



272	 Microcontrollers: Fundamentals and Applications with PIC

However, the real transfer characteristic in some given conditions (volt-
age supply, temperature, frequency) can have a slope different from G and 
an offset different from V0 (Figure 9.32a). The real values of the gain and 
offset can be found by applying two known input voltages V1 and V2 and 
relating them to the readings D1 and D2 that they originate. With this, it 
is possible to find the relationship between any code D given by the A/D 
converter and the voltage vx that produced it as:

	

v V V
D D

D D Vx =
−
−

−( )+2 1

2 1
1 1 .	 (9.31)

This process is called calibration and allows correcting for constant devi-
ations between the ideal and real responses. The voltage V1 is normally 
chosen as 0 V and the voltage V2 as the voltage that produces the full-scale 
voltage at the input of the converter, VFS. With V0 = 0 V, then V2 = VFS/G = 
Vref/G. Figure 9.32b shows how to implement this calibration process when 
the input currents for the multiplexers used (or the output resistance for 
the channels) are low enough so that their influence will be below 1 LSB. 
Otherwise, it is necessary to include a resistor equal to the value of the 
resistance of the output channels in the connection to ground, and also 
in the connection from the reference voltage. It is important to note that 
this only calibrates the part of the system between the application of the 
known voltages and their output. If the transfer characteristic is a straight 
line with a slope very close to the ideal slope, it is possible to calibrate with 
a single value, normally with V1 = 0 V.

If the actual response of the system is not a straight line, the input range 
can be divided into two or more contiguous subranges and the calibra-
tion process applied to each of them. Each subrange should be a straight 
line, thus allowing it to be calibrated using the previous process. Given 
a reading D, the first step is to determine what voltage range originated 

Dmax

D

D2

D1

Dmin
V1Vmin Vmax Vx

Vref/G
0

G

D

V2

Ideal

Sensor Signal
conditioning

AMUX A/D

Real

(a) (b)

Figure 9.32 
Calibration of a data acquisition system using two known voltages (V1 and V2) to determine 
the real transfer characteristic.



Analog Input and Output	 273

that specific reading. The potential nonlinearity can be determined by 
applying a known voltage V3 so V1 < V3 < V2. If the value obtained using 
Equation 9.31 is not V3, the response is nonlinear.

9.5  Direct Sensor–Microcontroller Interface

Analog signals that carry information in their time instead of in their 
amplitude can be digitized using a simple timer or digital counter like 
the ones available in many microcontrollers, as long as their inputs are 
Schmitt trigger (ST) inputs. Otherwise, it is necessary to incorporate 
external ST devices. The duration of the signal is determined by counting 
cycles from the internal clock between the edges of the signal. If these 
edges are not steep and there is noise with an amplitude higher than the 
hysteresis cycle for the ST, the beginning and end of the counting process 
can be erroneous.

The circuit shown in Figure 9.33 can be used to encode information in 
the duration of a signal when using a resistive sensor with a value Rx. The 
capacitor is first charged to the high output value (VOH) in pin 1, while 
pin P is kept in a high impedance state. Afterward, pin 1 is kept at a high 
impedance level, while pin P is set to the low-output voltage (VOL). This 
makes the capacitor discharge through Rx. The discharge time until the 
low threshold is detected by the Schmitt trigger circuit (VTL) and is pro-
portional to the product RxC as well as to the voltages VOH and VTL. The 
same approach could be used to measure the charge time instead of the 
discharge time. However, the low threshold for the Schmitt trigger circuit 
is less affected by noise than the high threshold.

The calibration circuit shown in Figure 9.34a can be used to obtain a 
reading for Rx independent of the values of C, VOH, and VTL, with Rc1 and 

Starts counting

Stops counting

DischargingCharging

C

Pin P

Pin 1

MCU VTL

Rx

Rp

VOL

VOH

Figure 9.33 
Measuring an unknown resistance based on the time needed to discharge a capacitor. Rp 
limits the capacitor charging current to less than 20 mA.



274	 Microcontrollers: Fundamentals and Applications with PIC

Rc2 being known resistors. The measurement algorithm is the same as 
described for Figure 9.33, although in this case the cycle is repeated three 
times, each time discharging the capacitor through a different resistor. 
The unknown resistance Rx can be found as

	

R N N
N N

R R Rx
x c

c c
c2 c c=

−
−

−( )+1

2 1
1 1

.

,	 (9.32)

with Nx, Nc1, and Nc2 being the discharge times, measured in clock cycles, 
through the resistors Rx, Rc1, and Rc2. Although one of the known resistors 
could be a short circuit, it is better to use resistors with values close to the 
extreme possible values for Rx.

Applying the same method to the bridge of sensors shown in figure 9.34b 
results in

	

N N
N

R
R

1 3

2 0

−
=
∆

.

,	 (9.33)

with N1, N2, and N3 being the readings obtained when discharging the 
capacitor through pins 2, 3, and 4, respectively.

The variable resistance and the sensor bridge shown in Figure 9.34 are 
connected to the microcontroller without any external element other than 
the capacitor. This approach is called direct interfacing because there are no 
integrated circuits between the sensor and the microcontroller.

Microcontrollers with an internal A/D converter can be directly con-
nected to sensors in circuits whose output is a voltage, provided that the 
resolution of the converter is adequate to the voltage range. However, if 
the sensor is a resistor bridge, the A/D converter must have a differen-
tial input. For the circuits shown in Figure 9.34, an A/D converter is not 
necessary as the measurement of the unknown resistance is done with a 
timer. The method described for Figure 9.33 can also be used to measure 
capacitive sensors, switching the connections of the capacitor and resistor. 
The calibration circuit must then include two known capacitors. One of 
them can be an open circuit (C = 0), as shown in Figure 9.35. With this, the 
parasitic capacitances between node N and the ground are charged in the 
first phase and discharged through R. Choosing an R higher than 1 MΩ 
to have longer discharge times makes the circuit extremely sensitive to 
interference even when the connections to Cx are very short.

This method for measuring resistances and capacitances has two inher-
ent limitations: The first one comes from the quantization in the counting 
process, as the result can only be an integer multiple of the clock cycle. The 
second limitation arises from the uncertainty in crossing the detection 



Analog Input and Output	 275

threshold due to noise superimposed to the discharge voltage or to the 
threshold voltage VTL.

The limitation from the quantization process depends on the method 
used to detect when the discharging signal crosses the threshold voltage 
for the Schmitt trigger (Section 5.1.2). If the detection is done by polling, 
the event may occur immediately after the microcontroller is polled. This 
results in an uncertainty that can vary between one clock cycle and the 
number of clock cycles between polls. If using interrupts, the uncertainty 
can vary between one clock cycle and the number of cycles for the lon-
gest instruction that needs to be finished before servicing the interrupt. 
If the microcontroller has a capture module (Section 6.2), the value of the 

Pin 4
Rc2

R0 + ∆R R0 – ∆R

R0 – ∆R
Rp

R0 + ∆R

Rc1

Rx

Rp

Pin 3

Pin 2

C C
Pin 1

MCU

Pin 4

Pin 3

Pin 2

(b)(a)

Pin 1

MCU

Figure 9.34 
(a) If two known resistances are measured with the method shown in Figure 9.33, it is pos-
sible to determine Rx without knowing the value of C or the output voltage values in the 
microcontroller. (b) A sensor bridge can be connected as a circuit with three input termi-
nals and one output terminal and use the same measurement method as in (a).

MCU

Rp

Cx

Cc

Pin 1 N

R

Pin 2

Pin 3

Figure 9.35 
Measuring an unknown capacitor based on its discharge time through resistor R. Rp limits 
the charging current for the capacitor to less than 20 mA. If two known capacitances (open 
circuit and Cc) are measured with the same method, we can determine Cx without knowing 
R or the output voltages for the microcontroller.



276	 Microcontrollers: Fundamentals and Applications with PIC

timer connected to the discharge time is captured when the threshold VTL 
is detected.

The effect of the noise in triggering the Schmitt trigger circuit depends 
on the slope of the signal at that point. Assuming constant amplitude for 
the noise, the error in detecting the trigger time will increase when the 
slope of the signal decreases. For this reason, using a large RC time con-
stant to increase the number of counts will result in an increased error 
due to the noise as the signal will be slower. However, if the RC constant is 
selected small in order to have a signal with a faster slope, then the num-
ber of counts will be smaller and the quantization will have an increased 
effect on the error. The optimal value for thesconstant depends on the 
noise levels for the threshold voltage and the discharging signal. For a 
printed circuit board designed correctly, if power supply voltage is decou-
pled, RC can be between 1 ms and 3 ms, resulting in a resolution between 
10 bits and 12 bits. If the noise effect rather than quantization predomi-
nates, the resolution can be increased by averaging several readings.

9.6  Analog Back-End

To obtain an analog signal at the output of a microcontroller, it is necessary 
to reverse the process described for the front-end: one or several signals 
must be reconstructed from their values at given times. These functions 
are carried out by the analog back-end.

9.6.1  D/A Converters

A digital-to-analog (D/A) converter (DAC), shown in Figure 9.36a, outputs 
a voltage or a current whose amplitude corresponds to the digital code at 
the input (Bn-1, Bn-2, …, B1, B0). The output voltage or current is a fraction of 
the reference voltage:

	

V V B B B B
n no ref

n-1 n-2 1 0= + + + +










−2 2 2 22 1…  .	 (9.34)

Each bit Bi can be 0 or 1. Therefore, this function can be seen as the prod-
uct of an analog voltage Vref and a digital code. Figure 9.36b shows a stan-
dard circuit to implement this function. Each bit opens or closes a switch 
whose position in the R–2R network is farther away from the output as the 
significance of the bit increases. The D/A converters integrated in micro-
controllers use a C–2C capacitive network instead of a resistive network, 
as capacitors are easier to integrate than resistors. The connection of the 



Analog Input and Output	 277

C–2C is slightly different than the connection for the R–2R network, but 
the final effect is the same.

The ideal and real transfer characteristics of a D/A converter can be 
described using the same parameters that describe the transfer character-
istics for an A/D converter (Figure 9.27).

9.6.2  Analog Demultiplexing

Some D/A converters have multiple channels, up to 16 channels with 16 
bits to produce several analog signals simultaneously. However, if the fre-
quency of these signals is not too high, it is possible to use a fast single 
D/A converter and an analog demultiplexer, as shown in Figure 9.37. This 
analog demultiplexer carries out the inverse function of the input multi-
plexers shown in Figures 9.9 and 9.10.

The output voltage for each channel is connected to a sample-and-hold 
amplifier by closing the appropriate switch in the demultiplexer. The 
holding capacitor for each channel must be large enough so it will not 
discharge significantly before its voltage is refreshed or changed from 
the D/A converter. However, larger capacitance values will need longer 
charging times. Analog demultiplexing can be done with the same mul-
tiplexers described in Section 9.2.4 because, unlike digital multiplexers, 
analog multiplexers are reversible (Figure 9.21).

9.6.3 E xtrapolation Methods

The voltage at the output of the D/A converter corresponds to its input 
code. Therefore, the output voltage will be kept constant until the D/A 
updates the value of its input. If the D/A converter is connected to a sam-
ple-and-hold amplifier, the output of this amplifier will be constant until it 
samples another value. This is called a zero-order hold (ZOH) extrapolation 
because the output is constant until a different value comes. Because the 

DAC

MSB

LSB

(a) (b)

+–

+

–

Vs–

Vref

Vref 2R 2R 2R

R R R

2R 2R

RBn–1 Bn–2 Bn–3 B0

Io

Vo

Vo

t1 t2 t3

t1 t2 t3

0 1 1
1 1 1
1 1 1
1 0 1
1 0 1
0 1 1
1 0 1
0 1 1

Vs+

Figure 9.36 
D/A converter: function and standard circuits based on an R–2R network.



278	 Microcontrollers: Fundamentals and Applications with PIC

output signal looks like a staircase, to have a smooth signal it is necessary 
to update the output at a higher rate as shown in Figure 9.38. The modulus 
of the transfer function for the zero-order extrapolation is

	

H f T fT
fT

( ) = sinπ
π

,	 (9.35)

with T being the holding time. For a sine signal with an amplitude of A 
volts and frequency f, in order for the difference between the ideal and the 
staircase signal to be less than, say, A/210, it is necessary that fT < 41. This 
means that the sine signal should be approximated with at least 41 steps.

9.6.4  PWM Outputs

The dc value of a pulse width modulated signal, such as the one depicted 
in Figure 9.39, depends on its duty cycle (Section 6.2.3) as

	

V V V T V T
T0= −( ) ≈OH OL

ON
DD

ON

T
,	 (9.36)

with T being the pulse period. This equation assumes that the pulse high 
voltage is VDD and its low voltage is 0 V. In practice, depending on the type 
of microcontroller used and its output currents, the high voltage can be 

SHA
1

ADEMUX

D/A

Data bus

Digital
controller

System bus

Address bus

SHA
2

Vo2

Vo1

Vo3

Vo4

SHA
3

SHA
4

Figure 9.37 
Analog demultiplexing to obtain several analog signals with a single D/A converter.



Analog Input and Output	 279

as low as VDD – 0.7 V and the low voltage can be as high as 0.6 V. In any 
case, by adjusting the duty cycle, it is possible to obtain any desired dc 
voltage. The stability of this dc voltage directly depends on the stability of 
VDD. If the current sourced by the output gates is not high enough, we can 
connect a voltage comparator between the PWM output and the low-pass 
filter. To achieve an output with a higher voltage, the comparator should 
be open-collector or open-drain.

If the PWM signal is filtered using a first-order low-pass filter with a 
cutoff frequency fc, the peak-to-peak voltage for the first harmonic at the 
output of the filter is

	

V V

f
f

1 2

2 1

1

=

+










DD

c

π
.	 (9.37)

Figure 9.38 
Effect of the frequency of the samples on the waveform for the reconstructed signal when 
using a zero-order hold. For better similarity between the reconstructed signal and the 
ideal signal, it is necessary to have a higher number of samples (left). Few samples per unit 
of time yield a signal with poor resemblance to the ideal signal (right).

VPWM

VOH

V0= +

VOL

TON

T Tt t t

Figure 9.39 
A PWM can be produced as the sum of a dc signal and a square signal without dc value, 
which can be seen as the sum of several harmonic sine signals. The amplitude of the first 
sine signal will be (VOH – VOL)2/π.



280	 Microcontrollers: Fundamentals and Applications with PIC

Higher-order harmonics have higher attenuation, decreasing with the 
square of the order of the filter. If the ripple due to the first harmonic has 
to be less than 1 LSB/2q for a system with N bits, the cutoff frequency of 
the filter must meet

	

f f f
N q N qc< −

≈
+ +

π
2 2 1

1 25
2
,

.	 (9.38)

For example, if f = 20 kHz and N = 8, the cutoff frequency has to be less 
than 25 Hz to achieve a ripple lower than one-fourth LSB. Active filters 
have lower output impedances compared to passive filters, but they add 
an offset voltage to the output voltage. They are also limited in the range 
of values for the output voltage.

In addition to the effects of the ripple, the resolution in the dc out-
put voltage is also limited due to the resolution for TON. According to 
Equation 9.36, the output voltage can be lowered by increasing T, but 
this implies reducing the cutoff frequency for the low-pass filter. This 
in turn causes a slower transient response when changing dc output 
values.

When the desired output is a sine signal with a dc offset, this can be 
implemented by the modulating signal for the PWM signal having the 
desired output frequency. In this case, however, the output filter must be 
an active filter, order 3 or higher, to have a ripple compatible with an 8-bit 
system or higher. If the maximal frequency for the PWM signal is about 
20 kHz, this method can generate signals up to 1 kHz. These signals can 
be used as test signals or for acoustical communication.

9.6.5  Output Protections

The voltage, current, and power levels that microcontrollers can handle 
are limited to relatively low values in the range of VSS – 0.3 V to VDD 
+ 0.3  V and ± 25  mA. Therefore, it is necessary to use external driv-
ers when trying to operate on loads that require higher power levels. 
It is also necessary to protect the microcontroller against higher val-
ues of voltages and current. Section 9.2.3 describes the protections at 
the input to protect the microcontroller against anomalous situations. 
However, even normal operating conditions can result in dangerous 
voltage and current levels in the output pins. When the current through 
an inductive load is suddenly interrupted, the inertia of the current to 
continue moving creates a voltage difference across the open circuit of 
the switch. This voltage can be around 20 V to 30 V even for small cur-
rents and inductances. This overvoltage can be prevented by placing a 
diode or a varistor in parallel with the load, as shown in Figure 9.40a. 



Analog Input and Output	 281

When the switch opens (for example, moves from 1 to 0) the current that 
was flowing through the inductance will flow through the diode until 
it extinguishes.

The problem with capacitive loads arises when they are turned on,  
because the initial current through the capacitor is only limited by the 
internal resistance of the load. The solution in this case is to place a resis-
tor with a negative temperature coefficient (NTC thermistor) in series with 
the load, as shown in Figure 9.40b. The initial value of this resistance is 
high, at least 250 Ω, which is enough to limit the initial current. As the 
current flows, the NTC thermistor heats up and its value diminishes; the 
capacitor can charge quickly.

L

RL

Vo C+Vo
+

––

–t°

(a) (b)

Figure 9.40 
Output protections for (a) inductive load: voltage limiter, and (b) capacitive load: current 
limiter. The switch represents the action from 0 to 1 (closing) and 1 to 0 (opening) in the 
output gate.





283

Appendix: Acronyms

A/D	 analog-to-digital (converter)
ACC	 accumulator
ADEMUX	 analog demultiplexer
AFE	 analog front-end
ALU	 arithmetic and logic unit
AMUX	 analog multiplexer
ASCII	 American Standard Code for Information Interchange
BISYNC	 Binary Synchronous Communication
BOR	 brown-out reset
CCP	 compare/capture/PWM
CISC	 complex instruction set computer
CMOS	 complementary metal-oxide semiconductor
CMRR	 common mode rejection ratio
CPU	 central processing unit
CSMA/CD	 Carrier Sense Multiple Access with Collision Detection
D/A	 digital-to-analog (converter)
DCE	 data communication equipment
DIP	 dual in-line package
DMA	 direct memory access
DNL	 differential nonlinearity
DR	 dynamic range
DSP	 digital signal processor
DTE	 data terminal equipment
EEPROM	 electrical erasable programmable read-only memory
EIA	 Electronic Industries Alliance
ENOB	 effective number of bits
EPROM	 erasable programmable read-only memory
FIFO	 first in, first out
FPGA	 field programmable gate array
FS	 full scale
FSR	 full-scale (input) range
GIE	 global interrupt enable
GPR	 general purpose register
HDLC	 High-Level Data Link Control
I2C	 inter-integrated circuit
ICSP	 In-Circuit Serial Programming
IEC	 International Electrotechnical Commission
INL	 integral non-linearity
IR	 instruction register
LCD	 liquid-crystal display



284	 Appendix: Acronyms

LED	 light-emitting diode
LIFO	 last in, first out
LPF	 low-pass filter
LSB	 least significant bit
MC	 machine cycle
MODEM	 modulator–demodulator
MOV	 metal-oxide varistor (variable resistor)
MPASM	 macro assembler for PIC microcontrollers
MSB	 most significant bit
MSSP	 master synchronous serial port
NTC	 negative temperature coefficient
OST	 oscillator start-up timer
OTP	 one-time programmable
PC	 program counter
PCON	 power control
PIC	 programmable integrated circuit
PLD	 programmable logic devices
POR	 power-on reset
PSP	 parallel slave port
PTC	 positive temperature coefficient
PWM	 pulse width modulation
PWRT	 power-up timer
RAM	 random-access memory
RISC	 reduced instruction set computer
ROM	 read-only memory
RS-232C	 Recommended Standard 232, Revision C
RTC	 real-time clock
SCI	 serial communication interface
SCL	 serial clock line
SDA	 serial data line
SDLC	 Synchronous Data Link Control
SFR	 special function register
SI	 International System of Units
SP	 stack pointer
SPI	 serial peripheral interface
SPP	 slave parallel port
SSP	 synchronous serial port
ST	 Schmitt trigger
STATUS	 status register or bit
USART	 universal synchronous asynchronous transmitter receiver
USB	 universal serial bus
W	 working register
WDT	 watchdog timer
XTAL	 crystal
ZOH	 zero-order hold



285

Bibliography

Baker, B. A Baker’s Dozen: Real Analog Solutions for Digital Designers. Burlington, 
MA: Newnes, 2005.

Bowling, S. Understanding A/D Converter Performance Specifications, AN693. 
Chandler, AZ: Microchip Technology, Inc., 2002.

Cravotta, R. The 32nd Annual Microprocessor Directory. EDN, August 4, 2005.
EDN’s 2005 Microprocessor/Microcontroller Directory. EDN, August 5, 2004.
Embedded Control Handbook Update 2000. Chandler, AZ: Microchip Technology, 

Inc., 1999.
Fundamentals of RS–232 Serial Communications, Application Note 83. Dallas 

Semiconductor. March 29, 2001.
The I2C-Bus Specification, Version 2.1. Philips Semiconductors, January 2000.
Irazabal, J.-M., and S. Blozis. I2C Manual, AN10216-01. Philips Semiconductors, 

March 24, 2003.
MCS-51™ Microcontroller Family User’s Manual. Mt. Prospect, IL: Intel Corporation, 

February 1994.
MPLAB® IDE User’s Guide. Chandler, AZ: Microchip Technology, Inc., 2005.
Pallas-Areny, R., and J. G. Webster, Analog Signal Processing. New York: John Wiley 

& Sons, 1999.
Pallas-Areny, R., and J. G. Webster, Sensors and Signal Conditioning, 2nd ed. New 

York: John Wiley & Sons, 2001.
Pardo Carpio, F., Edu-PIC User’s Manual. Universitat de València, http://tapec.

uv.es/edupic, July 2002.
Peatman, J. B. Design with Microcontrollers. New York: McGraw Hill, 1988.
Peatman, J. B. Design with PIC Microcontrollers. Upper Saddle River, NJ: Prentice-

Hall, 1997.
PIC16F87X Data Sheet 28/40-Pin 8-Bit CMOS FLASH Microcontrollers. Chandler, 

AZ: Microchip Technology, Inc., 2001.
PICmicro™ Mid-Range MCU Family Reference Manual. Chandler, AZ: Microchip 

Technology, Inc., December 1997.
Reverter, F., and R. Pallàs-Areny, Direct Sensor-to-Microcontroller Interface Circuits: 

Design and Characterization. Barcelona, Spain: Marcombo, 2005.
Richey, R. How to Implement ICSP™ Using PIC16CXXX OTP MCUs. Chandler, AZ: 

Microchip Technology, Inc., 1999.
Wharton, J. An Introduction to the Intel® MCS-51™ Single-Chip Microcomputer Family, 

AP-69. Intel Corporation, 1980.





287

Index

A
Alphanumeric liquid-crystal displays, 

parallel input, output, 
148–155

ALU. See Arithmetic and logic unit
American Standard Code for 

Information Interchange, 47, 
77–78, 84, 104, 113, 139, 148, 
152, 283

AMUX. See Analog multiplexer
Analog demultiplexer, 277–278, 283
Analog input, output signal 

acquisition, distribution, 
233–284

10-bit analog-to-digital converter
conversion module architecture, 

262–266
conversion module 

programming, 269–271
conversion timing, 266–268
converter module, 262–271

analog back-end, 276–281
analog demultiplexing, 277
digital-to-analog converter, 

276–277
extrapolation methods, 277–278
output protections, 280–281
pulse width modulation, 

outputs, 278–280
calibration, 271–273
direct sensor-microcontroller 

interface, 273–276
front-end in data acquisition 

systems, 242–262
amplifiers, 247–251
analog multiplexers, 253–255
analog-to-digital converter, 

259–262
differential nonlinearity, 261
effective number of bits, 261
integral nonlinearity, 261
quantization error, 261

anti-alias filters, 255–257
example, 257

loss-pass filters, 256
attenuators, 243–247
common-mode rejection ratio, 

250
common-mode voltage, 247
differential input, 248
differential-mode voltage, 247
differential signal, 247
example, 244–247, 251
floating signal, 248
input protections, 252

filters, 251–253
positive temperature 

coefficient thermistors, 252
instruction amplifier, 249
metal oxide varistors, 252
off-the-ground signal, 248
offset voltage, 249
pseudodifferential voltage, 248
sample-and-hold amplifier, 

257–259
example, 258

Schottky diodes, 252
single-ended voltage, 247
voltage limiters, 252
Zener diodes, 252

system structure for signal 
acquisition, distribution, 
233–242

bandwidth, 238–239
dynamic range, 236–238

analog front-end, 236
dynamic range of 

measurement, 236
example 9, 238

high-level/low-level mutiplexing 
architectures, 240–242
low-level mutiplexing, 242

measurement functions, control 
systems, 233–236
flash converters, 235
quasidigital sensors, 235
successive approximation 

converters, 235



288	 Index

signal sampling, 239–240
Nyquist criterion, 240
repetitive sampling, 240

Analog multiplexer, 31, 240–242, 
253–254, 256, 263, 272, 283

Analog-to-digital converter, 5, 16, 
30–31, 33–38, 55, 121–122, 126, 
129–130, 190, 193, 198, 212, 223, 
234–243, 256–272, 274, 277, 283

Arithmetic and logic unit, 1, 3–4, 16–17, 
31–38, 283

programmable integrated circuit 
microcontrollers, 16–17

Arithmetic instruction, medium-end 
programmable integrated 
circuit microcontrollers, 72–74

ASCII. See American Standard Code 
for Information Interchange

Assembler language elements, macro 
assembler for programmable 
integrated circuit 
microcontrollers assembler 
from microchip, 82–110

addressing operators, 92
arithmetic operators, 87–89
assign operators, 90–92
Boolean operators, 89
direct bit manipulation, logic 

operators using, 90
directives, 93–103

directives for relocatable code, 
98–103

general use directives, 94–98
example, 83–92, 94–103
expressions, 87–92
logic, 89
operations, 87–92
operators, 87–92

Assembler language programming
data addressing modes, 65–67

example, 66–67
elements, macro assembler for 

programmable integrated 
circuit microcontrollers 
assembler from microchip

example, 104–109
macroinstructions, 103–105
organization of program in 

assembler language, 105–109

resources for programming 
programmable integrated 
circuit microcontrollers in 
assembler language, 110–120

example, 114–120
library manager MPLIB, 117–120
linker MPLINK, 115–117
macro assembler for 

programmable integrated 
circuit microcontrollers
absolute code generation, 112
assembler, 111–115
files used/generated during 

assembling process, 
112–115

relocatable code generation, 
112

programs used to program 
applications in assembler 
language in medium-end 
programmable integrated 
circuit microcontrollers, 
110–111

stack, 67–69
Asynchronous communication, 209

B
Binary Synchronous Communication, 

208, 283
BISYNC. See Binary Synchronous 

Communication
BOR. See Brown-out reset
Brown-out reset, 7, 23–26, 283
Buses, 1

C
Capture mode timer, 169–174

example, 171–174
Carrier Sense Multiple Access with 

Collision Detection, 209, 283
Central processing unit, 1–4, 8–12, 17, 

27, 31, 125, 183–185, 187, 191, 
194, 283

Characterization of microcontrollers, 
1–3

CMOS. See Complementary metal-
oxide semiconductor



Index	 289

CMRR. See Common mode rejection 
ratio

Common mode rejection ratio, 
249–250, 283

Compare/capture/pulse width 
modulation module timers, 
168–181

capture mode, 169–174
example, 171–174

compare mode, 174–175
example, 175

pulse width modulation mode, 
176–181

example, 180–181
Compare mode timers, 174–175

example, 175
Complementary metal-oxide 

semiconductor, 7, 149, 253, 283
Complex instruction set computer, 1, 

11, 14, 283
Complex set instruction computer 

architecture, 11
Components of microcontrollers, 3–9
Configuration bits, programmable 

integrated circuit 
microcontrollers, 21–22

Connection between equipment, 
RS-232C interface, 210–212

Consumption rate, 7–8
Control buses, 1
Control transfer instructions, 

medium-end programmable 
integrated circuit 
microcontrollers, 74–81

Copies, protection of programs 
against, 3

Copying, protection against, 8–9
CPU. See Central processing unit
CSMA/CD. See Carrier Sense Multiple 

Access with Collision 
Detection

D
D/A. See Digital-to-analog converter
Data address register, 4
Data buses, 1
Data communication equipment, 

210–212, 283

Data terminal equipment, 210–211, 283
Data transfer instructions, medium-

end programmable integrated 
circuit microcontrollers, 
71–72

DCE. See Data communication 
equipment

Designs using microcontrollers, 2–3
Differential nonlinearity, 261, 283
Digital signal processor, 283
Digital-to-analog converter, 5, 16, 25, 

65, 121–122, 146, 212, 230, 260, 
266, 276–278, 283

DIP. See Dual in-line package
Direct memory access, 126, 283
Displacement, 41
DMA. See Direct memory access
DNL. See Differential nonlinearity
DR. See Dynamic range
DSP. See Digital signal processor
DTE. See Data terminal equipment
Dual in-line package, 43, 283
Dynamic range, 236–238, 247, 283

E
EEPROM. See Electrical erasable 

programmable read-only 
memory

Effective number of bits, 261–262, 283
EIA. See Electronic Industries Alliance
Electrical erasable programmable 

read-only memory, 5, 15, 
21–22, 30, 32, 34–36, 38, 43–45, 
48–49, 55, 58–60, 117, 131, 183, 
193, 283

one-time programmable memory, 
43

Electronic Industries Alliance, 210, 283
Electronic Numerical Integrator and 

Calculator, 9
ENOB. See Effective number of bits
EPROM. See Erasable programmable 

read-only memory
Erasable programmable read-only 

memory, 5, 30, 32, 43–44, 283
Execution of instructions, 

programmable integrated 
circuit microcontrollers, 17–18



290	 Index

F
Failure, protection against, 3
Field programmable gate arrays, 12, 

14, 283
FIFO. See First in, first out
First in, first out, 218–219, 283
Fixed, vectored interrupts, 187–188

example, 187–188
interrupts, 187–188

example, 187–188
Fixed interrupt request, 187

interrupts, 187
Front-end in data acquisition systems, 

input protections, filters, 
positive temperature 
coefficient thermistors, 252

FSR. See Full-scale input range
Full-scale input range, 4, 33–36, 51–55, 

66–67, 73, 86, 103, 262, 283

G
General purpose register, 51–53, 69, 77, 

79, 85, 283
Generic requirements, 2–3
GIE. See Global interrupt enable
Global interrupt enable, 27, 50, 60, 86, 

189–191, 193–194, 196, 198, 201, 
204, 221, 264, 269, 283

GPR. See General purpose register

H
Hardware malfunctions, protection 

against, interrupts, 205–206
Harvard architecture, 9–11
HDLC. See High-Level Data Link 

Control
High-end microcontrollers, 

programmable integrated 
circuit microcontroller 
families, 32–38

High-Level Data Link Control, 209, 283

I
I2C. See Inter-integrated circuit
I2C bus, 212–216
ICSP. See In-Circuit Serial 

Programming

IEC. See International Electrotechnical 
Commission

In-Circuit Serial Programming, 16, 22, 
131, 283

INL. See Integral non-linearity
Input/output microcontroller 

resources, 2
Instruction register, 4, 31–38, 283
Instruction set, assembler language 

programming, 61–120
assembler language elements 

(for macro assembler for 
programmable integrated 
circuit microcontrollers 
assembler from microchip), 
82–110

addressing operators, 92
arithmetic operators, 87–89
assign operators, 90–92
Boolean operators, 89
directives, 93–103

directives for relocatable 
code, 98–103

general use directives, 94–98
example, 83–92, 94–109
expressions, 87–92
logic, 89
logic operators using direct bit 

manipulation, 90
macroinstructions, 103–105
organization of program in 

assembler language, 105–109
data addressing modes, 65–67

example, 66–67
instruction set in medium-end 

programmable integrated 
circuit microcontrollers, 
69–82

arithmetic/logic instructions, 
72–74

bit manipulation instructions, 81
example, 81

control transfer instructions, 
74–81
returns, 74–78
subroutine calls, 74–78
unconditional branches, 

74–78
data transfer instructions, 71–72



Index	 291

example, 72, 74–81
other instructions, 81–82

machine code, assembler language, 
61–64

example, 61–62
resources for programming 

programmable integrated 
circuit microcontrollers in 
assembler language, 110–120

example, 114–120
library manager MPLIB, 117–120
linker MPLINK, 115–117
macro assembler for 

programmable integrated 
circuit microcontrollers
absolute code generation, 112
assembler, 111–115
files used/generated during 

assembling process, 
112–115

relocatable code generation, 
112

programs used to program 
applications in assembler 
language in medium-end 
programmable integrated 
circuit microcontrollers, 
110–111

stack, 67–69
structure of instruction, 64–65

Integral non-linearity, 261, 283
Inter-integrated circuit, 5, 193, 212–215, 

223–224, 228, 230, 283
International Electrotechnical 

Commission, 39–40, 283
International System of Units, 39–40, 

71, 140, 284
Interrupt applications examples, 

198–206
hardware malfunctions, protection 

against, 205–206
interrupts, 198–206

real-time clock, 198–201
example, 199–201

real-time clock, 198–201
example, 199–201
synchronization of events to, 

202–205
example, 202–205

Interrupt requests
interrupts, resources, 183–185
resources, 183–185
servicing interrupts, 185–186

Interrupts, 183–206
defined, 183
fixed, vectored interrupts, 187–188

example, 187–188
fixed interrupt request, 187
interrupt applications examples, 

198–206
hardware malfunctions, 

protection against, 205–206
real-time clock, 198–201

example, 199–201
synchronization of events to, 

202–205
interrupt requests

defined, 183
resources, 183–185
servicing, 185–186

maskable interrupts, 184
nonmaskable interrupts, 184
in programmable integrated circuit 

microcontrollers, 189–198
interrupt service subroutine 

structure, 194–198
example, 195–196

interrupt sources, registers, 
189–194
example, 193

IR. See Instruction register

L
Last in, first out, 67–68, 194, 284
Least significant bit, 40, 235–237, 246, 

251, 257–258, 260–261, 272, 277, 
280, 284

LIFO. See Last in, first out
Light-emitting diodes, parallel input, 

output, 134–137
Liquid-crystal displays, alphanumeric, 

parallel input, output, 
148–155

Logic instruction, medium-end 
programmable integrated 
circuit microcontrollers, 72–74



292	 Index

Logic operators using direct bit 
manipulation, assembler 
language elements, macro 
assembler for programmable 
integrated circuit 
microcontrollers assembler 
from microchip, 90

Logic organization of memory, 41–42
displacement, 41

Low consumption microcontrollers, 
7–8

Low-end microcontrollers, 
programmable integrated 
circuit microcontroller 
families, 29–30

Low-pass filter, 284
Low power consumption, 3
Low-power consumption mode, 

programmable integrated 
circuit microcontrollers, 27

LPF. See Low-pass filter
LSB. See Least significant bit

M
Machine code, assembler language, 

61–64
example, 61–62

Machine cycles, programmable 
integrated circuit 
microcontrollers, 17–18

Macro assembler for programmable 
integrated circuit 
microcontrollers, 82, 93–95, 
110–113, 118–119, 284

Manufacturers of microcontrollers, 
12–14

Maskable interrupts, 184
Master synchronous serial port, 131, 

223, 228–230, 284
Matrix keypads, parallel input, output, 

138–145
Medium-end microcontrollers, 

programmable integrated 
circuit microcontroller 
families, 30–31

Medium-end programmable 
integrated circuit 
microcontrollers

electrical erasable programmable 
read-only memory, data 
memory, 58–60

example, 59–60
instruction set in, 69–82

arithmetic/logic instructions, 
72–74

bit manipulation instructions, 81
example, 81

control transfer instructions, 
74–81
returns, 74–78
subroutine calls, 74–78
unconditional branches, 

74–78
data transfer instructions, 71–72
example, 72, 74–81
other instructions, 81–82

parallel ports in, 126–133
example, 128–130
port A, 129–130
port B, 130–131
port C, 131
ports D, E, F, G, 131–132

program memory, 44–60
addressing program memory, 

45–47
example, 49–50
reading, writing program 

memory, 47–51
random-access memory data 

memory, 51–58
addressing data memory, 51–54
special function registers, 54–58

OPTION register, 57–58
Memory in medium-end 

programmable integrated 
circuit microcontrollers

electrical erasable programmable 
read-only memory, data 
memory, 58–60

example, 59–60
program memory, 44–60

addressing program memory, 
45–47

example, 49–50
reading, writing program 

memory, 47–51



Index	 293

random-access memory data 
memory, 51–58

addressing data memory, 51–54
special function registers, 54–58

OPTION register, 57–58
Memory in microcontrollers, 39–60

logic organization of memory, 
41–42

displacement, 41
memory in medium-end 

programmable integrated 
circuit microcontrollers

electrical erasable 
programmable read-only 
memory, data memory, 58–60

example, 59–60
program memory, 44–60

addressing program memory, 
45–47

example, 49–50
reading, writing program 

memory, 47–51
random-access memory data 

memory, 51–58
addressing data memory, 

51–54
OPTION register, 57–58
special function registers, 

54–58
overview, 39–44
types of memory, 43–44

electrical erasable 
programmable read-only 
memory, 43
one-time programmable 

memory, 43
random-access memory, 43
read-only memory, 43

Metal oxide varistors, front-end in 
data acquisition systems, 252

Microprocessors, manufacturers of, 
12–14

MODEM. See Modulator-demodulator
Modulator-demodulator, 210–211, 284
Most significant bit, 40, 259–260, 284
MPASM. See Macro assembler for 

programmable integrated 
circuit microcontrollers

MSB. See Most significant bit

MSSP. See Master synchronous serial 
port

N
Negative temperature coefficient, 281, 

284
Nonmaskable interrupts, 184
NTC. See Negative temperature 

coefficient

O
One-time programmable, 5, 30, 32, 

43–44, 131, 284
Optimization of space, 2
Oscillators

programmable integrated circuit 
microcontrollers, 19–21

start-up timer, 23–24, 284
programmable integrated circuit 

microcontrollers, 24
OTP. See One-time programmable

P
Parallel input, output, 121–155

connection of peripherals, 134–155
alphanumeric liquid-crystal 

displays, 148–155
example, 135–137, 139–145, 151
light-emitting diodes, 134–137
matrix keypads, 138–145
seven-segment light-emitting 

diodes, 145–148
switches, 134–137

data transfer techniques, 122–124
input/output techniques, 124–126
parallel ports in medium-end 

programmable integrated 
circuit microcontrollers, 
126–133

example, 128–130
parallel slave port, 132–133
port A, 129–130
port B, 130–131
port C, 131
ports D, E, F, G, 131–132



294	 Index

Parallel ports in medium-end 
programmable integrated 
circuit microcontrollers, 
126–133

example, 128–130
parallel slave port, 132–133
port A, 129–130
port B, 130–131
port C, 131
ports D, E, F, G, 131–132

Parallel slave port, 126, 131–133, 193, 
284

medium-end programmable 
integrated circuit 
microcontrollers, 132–133

PCON. See Power control
Peripheral connection, parallel input, 

output, 134–155
alphanumeric liquid-crystal 

displays, 148–155
example, 135–137, 139–145, 151
light-emitting diodes, 134–137
matrix keypads, 138–145
seven-segment light-emitting 

diodes, 145–148
switches, 134–137

PIC. See Programmable integrated 
circuit

Pipelining for instruction execution, 
programmable integrated 
circuit microcontrollers, 
18–19

PLD. See Programmable logic devices
POR. See Power-on reset
Positive temperature coefficient, 252, 

284
Power consumption, 3
Power control, 8, 26, 53, 55, 284
Power-glitch reset, 7
Power-on reset, 6–7, 23–26, 56, 149, 284
Power-up timer, 23–26, 284
Programmable integrated circuit, 8, 

15, 284
microcontroller timers, 157–168

timer0 module, 157–162
example, 161–162

timer1 module, 162–166
example, 164–166

timer2 module, 166–168

example, 167–168
microcontrollers, 15–38

arithmetic and logic unit, 16–17
characteristics of, 15–28

examples, 19, 22
configuration bits, 21–22
example, 26
execution of instructions, 17–18
interrupt service subroutine 

structure, example, 195–196
interrupt sources, registers, 

189–194
example, 193

interrupts, 189–198
interrupt service subroutine 

structure, 194–198
interrupt sources, registers, 

189–194
low-power consumption mode, 

27
machine cycles, 17–18
oscillator start-up timer, 24
oscillators, 19–21
pipelining for instruction 

execution, 18–19
programmable integrated circuit 

microcontroller families, 
28–38
high-end microcontrollers, 

32–38
low-end microcontrollers, 

29–30
medium-end 

microcontrollers, 30–31
reset options, 22–26
watchdog timer, 27–28
working register in, 16–17

Programmable integrated circuit 
microcontrollers, 223–231

example, 227–228
I2C interface, 228–231
master synchronous serial port, 223
SPI, 223–228
synchronous serial port, 223

Programmable logic devices, 12, 284
Protection against copying, 8–9
Protection against failure, 3



Index	 295

Protection against hardware 
malfunctions, interrupts, 
205–206

PSP. See Parallel slave port
PTC. See Positive temperature 

coefficient
Pulse width modulation, 31, 37, 131, 

157, 166, 168–171, 176–181, 
278–280, 284

mode timers, 176–181
example, 180–181

PWM. See Pulse width modulation
PWRT. See Power-up timer

R
RAM. See Random-access memory
Random-access memory, 4–5, 10, 

43–45, 51, 58, 67, 96, 99, 116, 
147–149, 153, 195–196, 284

Read-only memory, 4–5, 10, 32, 43–44, 
98, 116–117, 147, 149, 284

Real-time clock, 163, 198–206, 284
interrupts, 198–201
synchronization of events to, 

interrupts, 202–205
Recommended Standard 232, Revision 

C, 5, 210–212, 284
Recommended Standard 232, Revision 

C, 210–212
Reduced instruction set computer, 1, 

11, 14–15, 65, 284
architecture, 11

Reset options, programmable 
integrated circuit 
microcontrollers, 22–26

Reset signal, 6–7
RISC. See Reduced instruction set 

computer
ROM. See Read-only memory
RS-232C. See Recommended Standard 

232, Revision C
RTC. See Real-time clock

S
Schmitt trigger, 127–129, 131–132, 

195–196, 199–201, 203–205, 
273, 275–276, 284

Schottky diodes, front-end in data 
acquisition systems, 252

SCI. See Serial communication 
interface

SCL. See Serial clock line
SDA. See Serial data line
SDLC. See Synchronous Data Link 

Control
Selection of microcontrollers, 3
Serial clock line, 132, 213–215, 228–230, 

284
Serial communication interface, 39, 55, 

216, 222, 284
Serial data line, 132, 213–215, 228–230, 

284
Serial data transmission, 207–209
Serial input, output, 207–231

asynchronous communication, 209
connection between equipment, 

RS-232C interface, 210–212
data terminal equipment, 210
I2C bus, 212–216
RS-232C interface, 210–212
serial data transmission, 207–209
synchronous communication, 

209–210
usage of term, 208

synchronous serial port in 
programmable integrated 
circuit microcontrollers, 
223–231

example, 227–228
I2C interface, 228–231
master synchronous serial port, 

223
SPI, 223–228
synchronous serial port, 223

universal synchronous 
asynchronous transmitter 
receiver, serial port in 
programmable integrated 
circuit microcontrollers, 
216–223

asynchronous mode, 217–220
communication speed, 221–223
description, 217
example, 222–223
synchronous mode, 220–221



296	 Index

Serial peripheral interface, 223–227, 
284

Seven-segment light-emitting diodes, 
peripheral connection, 
145–148

SFR. See Special function register
SI. See International System of Units
Signal acquisition system structure, 

analog input, output signal 
acquisition, distribution, 
233–242

bandwidth, 238–239
dynamic range, 236–238

analog front-end, 236
dynamic range of measurement, 

236
example, 238

high-level/low-level mutiplexing 
architectures, 240–242

low-level mutiplexing, 242
measurement functions, control 

systems, 233–236
flash converters, 235
quasidigital sensors, 235
successive approximation 

converters, 235
signal sampling, 239–240

Nyquist criterion, 240
repetitive sampling, 240

Slave parallel port, 284
SP. See Stack pointer
Space optimization, microcontrollers, 

2
Special function register, 27, 29, 48–52, 

55, 59–60, 66, 69, 71, 73, 76, 
79, 96–97, 130–131, 157–158, 
189–190, 224, 228, 284

SPI. See Serial peripheral interface
SPP. See Slave parallel port
SSP. See Synchronous serial port
ST. See Schmitt trigger
Stack pointer, 4, 16, 67–68, 284
Status bit, 220, 225, 230–231, 264–265
Structure of instruction, instruction 

set, assembler language 
programming, 64–65

Synchronization of events to real-time 
clock, interrupts, 202–205

example, 202–205

Synchronous communication, 209–210
usage of term, 208

Synchronous Data Link Control, 209, 
284

Synchronous serial port in 
programmable integrated 
circuit microcontrollers, 
223–231

example, 227–228
I2C interface, 228–231
master synchronous serial port, 223
SPI, 223–228
synchronous serial port, 223

T
Timers, 157–181

compare/capture/pulse width 
modulation module, 168–181

capture mode, 169–174
example, 171–174

compare mode, 174–175
example, 175

pulse width modulation mode, 
176–181
example, 180–181

programmable integrated circuit 
microcontrollers, 157–168

timer0 module, 157–162
example, 161–162

timer1 module, 162–166
example, 164–166

timer2 module, 166–168
example, 167–168

Types of memory, 43–44
electrical erasable programmable 

read-only memory, 43
one-time programmable 

memory, 43
random-access memory, 43
read-only memory, 43

U
Universal serial bus, 5, 38, 211, 284
Universal synchronous asynchronous 

transmitter receiver, 34–35, 
38, 55, 131–132, 190, 193, 
216–223, 284



Index	 297

serial port in programmable 
integrated circuit 
microcontrollers, 216–223

asynchronous mode, 217–220
communication speed, 221–223
description, 217
example, 222–223
synchronous mode, 220–221

USART. See Universal synchronous 
asynchronous transmitter 
receiver

USB. See Universal serial bus

V
Von Neumann architecture, 9–11

W
Watchdog timer, 3, 5–7, 15–16, 21, 23, 

25–29, 31–38, 55–58, 70, 82, 
160, 284

programmable integrated circuit 
microcontrollers, 27–28

WDT. See Watchdog timer
Working register in programmable 

integrated circuit 
microcontrollers, 16–17

Z
Zener diodes, front-end in data 

acquisition systems, 252
Zero-order hold, 277, 279, 284
ZOH. See Zero-order hold






