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PREFACE

This book presents an elementary treatment of the principles of heat transfer.
As a text it contains sufficient material for a one-semester course which may
be presented at the junior level, or higher, depending on individual course
objectives. A background in ordinary differential equations is helpful for proper
understanding of the material. Although some familiarity with fluid mechanics
will aid in the convection discussions, it is not essential. The concepts of
thermodynamic energy balances are also useful in the various analytical de-
velopments.

Presentation of the subject follows classical lines of separate discussions for
conduction, convection, and radiation, although it is emphasized that the phys-
ical mechanism of convection heat transfer is one of conduction through the
stationary fluid layer near the heat transfer surface. Throughout the book em-
phasis has been placed on physical understanding while, at the same time,
relying on meaningful experimental data in those circumstances which do not
permit a simple analytical solution.

Conduction is treated from both the analytical and the numerical viewpoint,
so that the reader is afforded the insight which is gained from analytical solutions
as well as the important tools of numerical analysis which must often be used
in practice. A similar procedure is followed in the presentation of convection
heat transfer. An integral analysis of both free- and forced-convection boundary
layers is used to present a physical picture of the convection process. From
this physical description inferences may be drawn which naturally lead to the
presentation of empirical and practical relations for calculating convection heat-
transfer coefficients. Because it provides an easier instruction vehicle than other
methods, the radiation-network method is used extensively in the introduction
of analysis of radiation systems, while a more generalized formulation is given
later.

Systems of nonlinear equations requiring iterative solutions are also dis-

cussed in the conduction and radiation chapters. "
X



xiv Preface

The log-mean-temperature-difference and effectiveness approaches are pre-
sented in heat-exchanger analysis since both are in wide use and each offers
its own advantages to the designer. A brief introduction to diffusion and mass
transfer is presented in order to acquaint the reader with these processes and
to establish more firmly the important analogies between heat, mass, and mo-
mentum transfer.

A number of special topics are discussed in Chapter 12 which give added
flavor to the basic material of the preceding chapters.

Problems are included at the end of each chapter. Some of these problems
are of a routine nature to familiarize the student with the numerical manipu-
lations and orders of magnitude of various parameters which occur in the subject
of heat transfer. Other problems extend the subject matter by requiring students
to apply the basic principles to new situations and develop their own equations.
Both types of problems are important.

The subject of heat transfer is not static. New developments occur quite
regularly, and better analytical solutions and empirical data are continuously
made available to the professional in the field. Because of the huge amount of
information which is available in the research literature, the beginning student
could easily be overwhelmed if too many of the nuances of the subject were
displayed and expanded. The book is designed to serve as an elementary text,
so the author has assumed a role of interpreter of the literature with those
findings and equations being presented which can be of immediate utility to
the reader. It is hoped that the student’s attention is called to more extensive
works in a sufficient number of instances to emphasize the greater depth which
is available on most of the subjects of heat transfer. For the serious student,
then, the end-of-chapter references offer an open door to the literature of heat
transfer which can pyramid upon further investigation.

A textbook in its sixth edition obviously refiects many compromises and
evolutionary processes over the years. This book is no exception. While the
basic physical mechanisms of heat transfer have not changed, analytical tech-
niques and experimental data are constantly being revised and improved. One
objective of this new edition is to keep the exposition up to date with recent
information while still retaining a simple approach which can be understood
by the beginning student.

The computer is now the preferred vehicle for solution of many heat-transfer
problems. Personal computers with either local software or communication
links offer the engineer ample power for the solution of most problems. Despite
the ready availability of this computing power I have resisted the temptation
to include specific computer programs for two reasons: (1) each computer
installation is somewhat different in its input-output capability and (2) a number
of programs for microcomputers in a menu-driven format are already on the
scene or soon to be available. The central issue here has been directed toward
problem setup which can be adapted to any computational facility.

For those persons wishing to exploit the convenience and utility of the
microcomputer a separate software package, developed by Professor Alan D.

Tam



Preface xv

Kraus of the Naval Postgraduate School, is available from McGraw-Hill. This
package contains a diskette with programs as well as documentation illustrating
their use.

The SI (metric) system of units is the primary one for the text. Because the
Btu-ft-pound system is still in wide use, answers and intermediate steps to
examples are occasionally stated in these units. A few examples and problems
are completely in English units. Some figures have dual coordinates that show
both systems of units. These displays will enable the student to develop a
“‘bilingual”” capability during the period before full metric conversion is
achieved.

For this edition examples and problems oriented toward numerical (com-
puter-generated) solutions have been expanded for both steady state and tran-
sient conduction in Chapters 3 and 4. New convection correlations have been
added in Chapters 5, 6, and 7, and summary tables have been provided for
convenience of the reader. New examples have also been provided in the
radiation, convection, and heat exchanger material and over 250 new problems
have been added throughout the book. Over 200 of the previous problems have
been restated so that they are ‘‘new’’ for student work. In addition, all problems
have been reorganized to follow the sequence of chapter topics. A total of over
850 problems is provided.

With a book at this stage of revision the list of people who have been generous
with their comments and suggestions has grown very long indeed. Rather than
risk omission of a single name, I hope that a grateful general acknowledgment
will express my sincere gratitude for these persons’ help and encouragement.

J. P. Holman
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INTRODUCTION

Heat transfer is that science which seeks to predict the energy transfer which
may take place between material bodies as a result of a temperature difference.
Thermodynamics teaches that this energy transfer is defined as heat. The sci-
ence of heat transfer seeks not merely to explain how heat energy may be
transferred, but also to predict the rate at which the exchange will take place
under certain specified conditions. The fact that a heat-transfer rate is the
desired objective of an analysis points out the difference between heat transfer
and thermodynamics. Thermodynamics deals with systems in equilibrium; it
may be used to predict the amount of energy required to change 2 system from
one equilibrium state to another; it may not be used to predict how fast a change
will take place since the system is not in equilibrium during the process. Heat
transfer supplements the first and second principles of thermodynamics by
providing additional experimental rules which may be used to establish energy-
transfer rates. As in the science of thermodynamics, the experimental rules
used as a basis of the subject of heat transfer are rather simple and easily
expanded to encompass a variety of practical situations.

As an example of the different kinds of problems which are treated by
thermodynamics and heat transfer, consider the cooling of a hot steel bar which
is placed in a pail of water. Thermodynamics may be used to predict the final
equilibrium temperature of the steel bar—water combination. Thermodynamics
will not tell us how long it takes to reach this equilibrium condition or what
the temperature of the bar will be after a certain length of time before the
equilibrium condition is attained. Heat transfer may be used to predict the
temperature of both the bar and the water as a function of time.

Most readers will be familiar with the terms used to denote the three modes
of heat transfer: conduction, convection, and radiation. In this chapter we seek
to explain the mechanism of these modes qualitatively so that each may be
considered in its proper perspective. Subsequent chapters treat the three types

of heat transfer in detail. \



2 Introduction

1-1 CONDUCTION HEAT TRANSFER

When a temperature gradient exists in a body, experience has shown that there
is an energy transfer from the high-temperature region to the low-temperature
region. We say that the energy is transferred by conduction and that the heat-
transfer rate per unit area is proportional to the normal temperature gradient:

q T

_——~ —

A

When the proportionality constant is inserted,
q = —kA — (1-1)

where g is the heat-transfer rate and 37/x is the temperature gradient in the
direction of the heat flow. The positive constant k is called the thermal con-
ductivity of the material, and the minus sign is inserted so that the second
principle of thermodynamics will be satisfied; i.e., heat must flow downhill on
the temperature scale, as indicated in the coordinate system of Fig. 1-1. Equa-
tion (1-1) is called Fourier’s law of heat conduction after the French mathe-
matical physicist Joseph Fourier, who made very significant contributions to
the analytical treatment of conduction heat transfer. It is important to note that
Eq. (1-1) is the defining equation for the thermal conductivity and that k has
the units of watts per meter per Celsius degree in a typical system of units in
which the heat flow is expressed in watts.

We now set ourselves the problem of determining the basic equation which
governs the transfer of heat in a solid, using Eq. (1-1) as a starting point.

Consider the one-dimensional system shown in Fig. 1-2. If the system is in
a steady state, i.e., if the temperature does not change with time, then the
problem is a simple one, and we need only integrate Eq. (1-1) and substitute
the appropriate values to solve for the desired quantity. However, if the tem-
perature of the solid is changing with time, or if there are heat sources or sinks
within the solid, the situation is more complex. We consider the general case
where the temperature may be changing with time and heat sources may be

T Temperature
profile

qx

X Fig. 1-1 Sketch showing direction of heat flow.



Conduction heat transfer 3

/" Qgen = g4 dx
]
A
9x +ax
qx
Fig. 1-2 Elemental volume for one-dimensional heat-
" x —rdx}e conduction analysis.

present within the body. For the element of thickness dx the following energy
balance may be made:

Energy conducted in left face + heat generated within element
= change in internal energy + energy conducted out right face

These energy quantities are given as follows:

. oT
Energy in left face = g, = —kA P
Energy generated within element = gA dx
.. aT
Change in internal energy = pcA > dx

: oT
Energy out l'lght face = Gxrdx = — kA __:I
0X |x+dx

—A [kﬂ + 2 <k£> dx]
+0x ax ox

where ¢ = energy generated per unit volume, W/m?

¢ = specific heat of material, J/kg-°C
p = density, kg/m?
Combining the relations above gives
oT oT aT 9 9
-kA — + ¢ = — dx — —+ — (k=
P 4dA dx = pcA P dx — A [k T (k a:) dx]

a3 aT . aT
— —_— + = —_— -
or ax (k ax> a=r a7 (1-2)



4 Introduction

This is the one-dimensional heat-conduction equation. To treat more than one-
dimensional heat flow, we need consider only the heat conducted in and out
of a unit volume in all three coordinate directions, as shown in Fig. 1-3a. The
energy balance yields

dE
9 + 4y + q; + Ggen = Guvax T Gyray * Grvaz T Zr’

and the energy quantities are given by

gx = —kdydz )
ox
[ 9T o (, 9 1
= - —_— — _—
qx+dx -k ax ax (k ox dX— dy dZ
oT
q, = —kdxdz %
[ T 9 ] i
= - — + — —
Qy+ay Lk oy <k a:) dy— dx dz
aT
= —kd —
4. x dy %
aT d d
Qerd; = — [k % + Py (ké—) dz] dx dy
Qgen = G dx dy dz
dE

aT
o —pcdxdydzs;

so that the general three-dimensional heat-conduction equation is

o [ T\ 8 (. o (. oT T
Y+ 2 (k) + 2 (kL) 4 g=pc T :
ax( 6x> ay( ayT> az( az> =P % (1-3)

For constant thermal conductivity Eq. (1-3) is written

#T T T q 19T

xt o T Tk awr (1-3a)
where the quantity a = k/pc is called the thermal diffusivity of the material.
The larger the value of a, the faster heat will diffuse through the material. This
may be seen by examining the quantities which make up a. A high value of «
could result either from a high value of thermal conductivity, which would
indicate a rapid energy-transfer rate, or from a low value of the thermal heat
capacity pc. A low value of the heat capacity would mean that less of the energy
moving through the material would be absorbed and used to raise the temper-
ature of the material; thus more energy would be available for further transfer.
Thermal diffusivity « has units of square meters per second.



Conduction heat transfer 8

qy +dv

(b)

()
X

Fig. 1-3 Elemental volume for three-dimensional heat-conduction analysis: (a) cartesian coor-
dinates; (b) cylindrical coordinates; (c) spherical coordinates.

In the derivations above, the expression for the derivative at x + dx has
been written in the form of a Taylor-series expansion with only the first two
terms of the series employed for the development.

Equation (1-3a) may be transformed into either cylindrical or spherical co
ordinates by standard calculus techniques. The results are as follows:

Cylindrical Coordinates:

#T 18T 1T T ¢
e T e S -
ar:  ror rro¢*  9r  k (1-36)
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The coordinate systems for use with Eqs. (1-3b) and (1-3¢) are indicated in
Fig. 1-3b and c, respectively.

Many practical problems involve only special cases of the general equations
listed above. As a guide to the developments in future chapters, it is worthwhile
to show the reduced form of the general equations for several cases of practical
interest.

Steady-State One-Dimensional Heat Flow (No Heat Generation):

4T = (1-4)
dx?
Note that this equation is the same as Eq. (I-1) when g = constant.
Steady-State One-Dimensional Heat Flow in Cylindrical Coordinates (No Heat Generation):
7T 14 (1-5
dr? rdr )
Steady-State One-Dimensional Heat Flow with Heat Sources:
d’T ¢
—_— 4 - = 0 -
ac- Tk (1-6)
Two-Dimensional Steady-State Conduction without Heat Sources:
T T (1-7)
ax? ay? i

1.2 THERMAL CONDUCTIVITY
Equation (1-1) is the defining equation for thermal conductivity. On the basis
of this definition, experimental measurements may be made to determine the
thermal conductivity of different materials. For gases at moderately low.tem-
peratures, analytical treatments in the kinetic theory of gases may be used to
predict accurately the experimentally observed values. In some cases, theories
are available for the prediction of thermal conductivities in liquids and solids,
but in general, many open questions and concepts still need clarification where
liquids and solids are concerned.

The mechanism of thermal conduction in a gas is a simple one. We identify
the kinetic energy of a molecule with its temperature; thus, in a high-temper-
ature region, the molecules have higher velocities than in some lower-temper-
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ature region. The molecules are in continuous random motion, colliding with
one another and exchanging energy and momentum. The molecules have this
random motion whether or not a temperature gradient exists in the gas. If a
molecule moves from a high-temperature region to a region of lower temper-
ature, it transports kinetic energy to the lower-temperature part of the system
and gives up this energy through collisions with lower-energy molecules.

Table 1-1 lists typical values of the thermal conductivities for several ma-
terials to indicate the relative orders of magnitude to be expected in practice.
More complete tabular information is given in Appendix A. In general, the
thermal conductivity is strongly temperature-dependent.

We noted that thermal conductivity has the units of watts per meter per
Celsius degree when the heat flow is expressed in watts. Note that a heat rate
is involved, and the numerical value of the thermal conductivity indicates how
fast heat will flow in a given material. How is the rate of energy transfer taken
into account in the molecular model discussed above? Clearly, the faster the
molecules move, the faster they will transport energy. Therefore the thermal
conductivity of a gas should be dependent on temperature. A simplified ana-
lytical treatment shows the thermal conductivity of a gas to vary with the square
root of the absolute temperature. (It may be recalled that the velocity of sound
in a gas varies with the square root of the absolute temperature; this velocity
is approximately the mean speed of the molecules.) Thermal conductivities of
some typical gases are shown in Fig. 1-4. For most gases at moderate pressures
the thermal conductivity is a function of temperature alone. This means that
the gaseous data for 1 atmosphere (atm), as given in Appendix A, may be used
for a rather wide range of pressures. When the pressure of-the gas becomes of
the order of its critical pressure or, more generally, when non-ideal-gas behavior
is encountered, other sources must be consulted for thermal-conductivity data.

The physical mechanism of thermal-energy conduction in liquids is quali-
tatively the same as in gases; however, the situation is considerably more
complex because the molecules are more closely spaced and molecular force
fields exert a strong influence on the energy exchange in the collision process.
Thermal conductivities of some typical liquids are shown in Fig. 1-5.

In the English system of units heat flow is expressed in British thermal units
per hour (Btu/h), area in square feet, and temperature in degrees Fahrenheit.
Thermal conductivity will then have units of Btu/h - ft - °F.

Thermal energy may be conducted in solids by two modes: lattice vibration
and transport by free electrons. In good electrical conductors a rather large
number of free electrons move about in the lattice structure of the material.
Just as these electrons may transport electric charge, they may also carry
thermal energy from a high-temperature region to a low-temperature region,
as in the case of gases. In fact, these electrons are frequently referred to as
the electron gas. Energy may also be transmitted as vibrational energy in the
lattice structure of the material. In general, however, this latter mode of energy
transfer is not as large as the electron transport, and for this reason good
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Table 1-1 Thermal Conductivity of Various Materials at 0°C

Thermal conductivity
k
_ Material W/m - °C Btu/h - ft - °F
Metals:
Silver (pure) 410 237
Copper (pure) 385 223
Aluminum (pure) 202 117
Nickel (pure) 93 54
Iron (pure) 73 42
Carbon steel, 1% C 43 25
Lead (pure) 35 20.3
Chrome-nickel steel 16.3 9.4
(18% Cr, 8% Ni)
Nonmetallic solids:
Quartz, parallel to axis 41.6 24
Magnesite 4.15 2.4
Marble 2.08-2.94 1.2-1.7
Sandstone 1.83 1.06
Glass, window 0.78 0.45
Maple or oak 0.17 0.096
Sawdust 0.059 0.034
Glass wool 0.038 0.022
Liquids:
Mercury 8.21 4,74
Water 0.556 0.327
Ammonia 0.540 0.312
Lubricating oil, SAE 50 0.147 0.085
Freon 12, CCL,F, 0.073 0.042
Gases:
Hydrogen 0.175 0.101
Helium 0.141 0.081
Air 0.024 0.0139
Water vapor (saturated) 0.0206 0.0119
Carbon dioxide 0.0146 0.00844

electrical conductors are almost always good heat conductors, viz., copper,
aluminum, and silver, and electrical insulators are usually good heat insulators.
Thermal conductivities of some typical solids are shown in Fig. 1-6. Other data
are given in Appendix A.

The thermal conductivities of various insulating materials are also given in
Appendix A. Some typical values are 0.038 W/m - °C for glass wool and 0.78
W/m - °C for window glass. At high temperatures, the energy transfer through



Thermal conductivity 9

0.5
0.4
&
£
2 03k
> %
h~1 o
2, -
E o
3 £
e =
3 2
T 02
5
<=
[
0.1

0 200 400 600 1000
°F
L I | i i 1
0 100 200 300 400 500
Temperature °C

Fig. 1-4 Thermal conductivities of some typical gases [t W/m - °C = 0.5779
Btu/h - ft - °F].

insulating materials may involve several modes: conduction through the fibrous
or porous solid material; conduction through the air trapped in the void spaces;
and, at sufficiently high temperatures, radiation.

An important technical problem is the storage and transport of cryogenic
liquids like liquid hydrogen over extended periods of time. Such applications
have led to the development of superinsulations for use at these very low
temperatures (down to about —250°C). The most effective of these superin-
sulations consists of multiple layers of highly reflective materials separated by
insulating spacers. The entire system is evacuated to minimize air conduction,
and thermal conductivities as low as 0.3 mW/m - °C are possible. A convenient -
summary of the thermal conductivities of insulating materials at cryogenic
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Fig. 1-5 Thermal conductivities of some typical liquids.

temperatures is given in Fig. 1-7. Further information on multilayer insulation
is given in Refs. 3 and 2.

1.3 CONVECTION HEAT TRANSFER

It is well known that a hot plate of metal will cool faster when placed in front
of a fan than when exposed to still air. We say that the heat is convected away,
and we call the process convection heat transfer. The term convection provides
the reader with an intuitive notion concerning the heat-transfer process; how-
ever, this intuitive notion must be expanded to enable one to arrive at anything
like an adequate analytical treatment of the problem. For example, we know
that the velocity at which the air blows over the hot plate obviously influences
the heat-transfer rate. But does it influence the cooling in a linear way; i.e.,
if the velocity is doubled, will the heat-transfer rate double? We should
suspect that the heat-transfer rate might be different if we cooled the plate
with water instead of air, but, again, how much difference would there be?
These questions may be answered with the aid of some rather basic anal-
yses presented in later chapters. For now, we sketch the physical mechan-

.
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Fig. 1-6 Thermal conductivities of some typical solids

ism of convection heat transfer and show its relation to the conduction
process.

Consider the heated plate shown in Fig. 1-8. The temperature of the plate
is T.,, and the temperature of the fluid is 7. The velocity of the flow will appear
as shown, being reduced to zero at the plate as a result of viscous action. Since
the velocity of the fluid layer at the wall will be zero, the heat must be transferred
only by conduction at that point. Thus we might compute the heat transfer,
using Eq. (1-1), with the thermal conductivity of the fluid and the fluid tem-
perature gradient at the wall. Why, then, if the heat flows by conduction in
this layer, do we speak of convection heat transfer and need to consider the
velocity of the fluid? The answer is that the temperature gradient is dependent
on the rate at which the fluid carries the heat away; a high velocity produces
a large temperature gradient, and so on. Thus the temperature gradient at the
wall depends on the flow field, and we must develop in our later analysis an ex-
pression relating the two quantities. Nevertheless, it must be remembered that
the physical mechanism of heat transfer at the wall is a conduction process.
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Fig. 1-7 Apparent thermal conductivities of typical cryogenic insulation material: (a) multilayer
insulations; (b) opacified powders; (c) glass fibers; (d) powders; (e) foams, powders, and fibers,
according to Ref. 1. [1 Btuin/h - ft2- °F = 144 mW/m - °C]

To express the overall effect of convection, we use Newton’s law of cooling:
q = hA (Tw - oo) (1'8)

Here the heat-transfer rate is related to the overall temperature difference
between the wall and fluid and the surface area A. The quantity A is called the
convection heat-transfer coefficient, and Eq. (1-8) is the defining equation. An
analytical calculation of 4 may be made for some systems. For complex situ-
ations it must be determined experimentally. The heat-transfer coefficient is

Flow Free stream

IR " Fig.18 Convection heattrans-
fer from a plate.
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sometimes called the film conductance because of its relation to the conduction
process in the thin stationary layer of fluid at the wall surface. From Eq. (1-8)
we note that the units of & are in watts per square meter per Celsius degree

when the heat flow is in watts.

In view of the foregoing discussion, one may anticipate that convection heat
transfer will have a dependence on the viscosity of the fluid in addition to its
dependence on the thermal properties of the fluid (thermal conductivity, specific
heat, density). This is expected because viscosity influences the velocity profile
and, correspondingly, the energy-transfer rate in the region near the wall.

If a heated plate were exposed to ambient room air without an external

Table 1-2 Approximate Values of Convection Heat-Transfer Coefficients

h
Mode W/m? - °C Btu/h - ft? - °F
Free convection, AT = 30°C
Vertical plate 0.3 m [1 ft] high 45 0.79
in air
Horizontal cylinder, 5-cm diameter, 6.5 1.14
in air
Horizontal cylinder, 2-cm diameter, 890 157
in water
Forced convection
Airflow at 2 m/s over 0.2-m 12 2.1
square plate
Airflow at 35 m/s over 0.75-m 75 13.2
square plate
Air at 2 atm flowing in 65 11.4
2.5-cm-diameter tube at 10 m/s
Water at 0.5 kg/s flowing in 3500 616
2.5-cm-diameter tube
Airflow across S-cm-diameter 180 32
cylinder with velocity of 50 m/s
Boiling water
In a pool or container 2500-35,000 440-6200
Flowing in a tube 5000-100,000 880-17,600
Condensation of water vapor, 1 atm
Vertical surfaces 4000-11,300 700-2000
Outside horizontal tubes 9500-25,000 1700-4400
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of motion, a movement of the air would be experienced as a result of
thej density gradients near the plate. We call this natural, or free, convection
as ppposed to forced convection, which is experienced in the case of the fan
bldwing air over a plate. Boiling and condensation phenomena are also grouped
under the general subject of convection heat transfer. The approximate ranges
ofjconvection heat-transfer coefficients are indicated in Table 1-2.

14 RADIATION HEAT TRANSFER

In contrast to the mechanisms of conduction and convection, where energy
transfer through a material medium is involved, heat may also be transferred
through regions where a perfect vacuum exists. The mechanism in this case is
electromagnetic radiation. We shall limit our discussion to electromagnetic
radiation which is propagated as a result of a temperature difference; this is
called thermal radiation.

Thermodynamic considerations show* that an ideal thermal radiator, or
blackbody, will emit energy at a rate proportional to the fourth power of the
absolute temperature of the body and directly proportional to its surface area.
Thus

Gemitted — oAT* (1-9)

‘where o is the proportionality constant and is called the Stefan-Boltzmann

constant with the value of 5.669 x 10~® W/m? - K*. Equation (1-9) is called
the Stefan-Boltzmann law of thermal radiation, and it applies only to black-
bodies. It is important to note that this equation is valid only for thermal
radiation; other types of electromagnetic radiation may not be treated so simply.

Equation (1-9) governs only radiation emitted by a blackbody. The net radiant
exchange between two surfaces will be proportional to the difference in absolute
temperatures to the fourth power; i.e.,

g&el_;_c_ha_nge x (T — T,Y) (1-10)

We have mentioned that a blackbody is a body which radiates energy ac-
cording to the T* law. We call such a body black because black surfaces, like
as a piece of metal covered with carbon black, approximate this type of be-
havior. Other types of surfaces, like a glossy painted surface or a polished
metal plate, do not radiate as much energy as the blackbody; however, the
total radiation emitted by these bodies still generally follows the T,* propor-
tionality. To take account of the ‘‘gray’’ nature of such surfaces we introduce
another factor into Eq. (1-9), called the emissivity €, which relates the radiation
of the *‘gray’’ surface to that of an ideal black surface. In addition, we must

*Sece, for example, J. P. Holman, ‘‘Thermodynamics,” 3d ed., p. 350, McGraw-Hill Book Com-
pany, New York, 1980.



Dimensions and units 18

take into account the fact that not all the radiation leaving one surface will
reach the other surface since electromagnetic radiation travels in straight lines
and some will be lost to the surroundings. We therefore introduce two new
factors in Eq. (1-9) to take into account both situations, so that

q = FFgoA (I\* = TY) a-11)

where F. is the emissivity function and Fg is the geometric ‘‘view factor”
function. The determination of the form of these functions for specific config-
urations is the subject of a subsequent chapter. It is important to alert the
reader at this time, however, to the fact that these functions usually are not
independent of one another as indicated in Eq. (1-11).

O Radiation in an Enclosure

A simple radiation problem is encountered when we have a heat transfer surface
at temperature T, completely enclosed by a much larger surface maintained at
T,. We will show in Chap. 8 that the net radiant exchange in this case can be
calculated with

q = oA, (T* - T,%) (1-12)

Values of € are given in Appendix A.

Radiation heat-transfer phenomena can be exceedingly complex, and the
calculations are seldom as simple as implied by Eq. (1-11). For now, we wish
to emphasize the difference in physical mechanism between radiation heat-
transfer and conduction-convection systems. In Chap. 8 we examine radiation
in detail.

B 1-5 DIMENSIONS AND UNITS

In this section we outline the systems of units which are used throughout the
book. One must be careful not to confuse the meaning of the terms units and
dimensions. A dimension is a physical variable used to specify the behavior or
nature of a particular system. For example, the length of a rod is a dimension
of the rod. In like manner, the temperature of a gas may be considered one of
the thermodynamic dimensions of the gas. When we say the rod is so many
meters long, or the gas has a temperature of so many degrees Celsius, we have
given the units with which we choose to measure the dimension. In our de- -
velopment of heat transfer we use the dimensions

L = length

M = mass

F = force

T = time

T = temperature
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All the physical quantities used in heat transfer may be expressed in terms of
these fundamental dimensions. The units to be used for certain dimensions ar
selected by somewhat arbitrary definitions which usually relate to a physioj
phenomenon or law. For example, Newton’s second law of motion may be
written

Force ~ time rate of change of momentum

_ , dimv)
F =k dr

where k is the proportionality constant. If the mass is constant,
F = kma (1-13)
where the acceleration is a = dv/dr. Equation (1-11) is usually written

1 .
= — ma (1-19)

<

with 1/g. = k. Equation (1-14) is used to define our systems of units for mass,
force, length, and time. Some typical systems of units are
1. 1-pound force will accelerate a 1-1b mass 32.17 ft/s2,
2. 1-pound force will accelerate a 1-slug mass 1 ft/s?.
3. 1-dyne force will accelerate a 1-g mass 1 cm/s2.
4. 1-newton force will accelerate a 1-kg mass 1 m/s?.
S. I-kilogram force will accelerate a 1-kg mass 9.806 m/s?.
The 1-kg force is sometimes called a kilopond.
Since Eq. (1-14) must be dimensionally homogeneous, we shall have a dif-

ferent value of the constant g. for each of the unit systems in items 1 to 5
above. These values are

1. g. = 32.17 b, - ft/lb, - s?
2. g. = 1slug - ftb, - s?
3.g. = 1g-cm/dyn - s2
4.g. = 1kg - m/N - s?

S. g = 9.806 kg, - m/kgs - s?

It matters not which system of units is used so long as it is consistent with the
above definitions.

Work has the dimensions of a product of force times a distance. Energy has
the same dimensions. The units for work and energy may be chosen from any
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of the systems used above, and would be

1. 1b,- ft
2. 1b,- ft
3.dyn-cm = | erg
4. N -m = 1 joule (J)
5. kg, -m = 9.806]
In addition, we may use the units of energy which ate based on thermal phe-
nomena:
1 Btu will raise 1 Ib,, of water 1°F at 68°F.
1 cal will raise 1 g of water 1°C at 20°C.
1 kcal will raise 1 kg of water 1°C at 20°C.

Some conversion factors for the various units of work and energy are

1 Btu = 778.16 Ib, - ft
1Bt = 10553
1 kcal = 4182 ]

L1b, - ft = 1.356 1
1 Btu = 252 cal

Other conversion factors are given in Appendix A.
The weight of a body is defined as the force exerted on the body as a result
of the acceleration of gravity. Thus

w=2%m (1-15)

8c
where W is the weight and g is the acceleration of gravity. Note that the weight
of a body has the dimensions of a force. We now see why systems 1 and 5
above were devised; 1 Ib,, will weigh 1 Ib, at sea level, and 1 kg,, will weigh 1

kgs.
gfTempe:rature conversions are performed with the familiar formulas
°F = ¥C + 32
°R = °F + 459.69
K = °C + 273.16
‘R =%K

Unfortunately, all the above unit systems are used in various places through-
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Table 1-3 Muitiplier Factors for SI Units

Multiplier Prefix Abbreviation
102 tera T
10° giga G
108 mega M
10° kilo k
102 hecto h
10-2 centi c
10-3 milli m
10-¢ micro m
10-? nano n
10-12 pico p
1018 atto a

out the world. While the food-pound force, pound mass, second, degree Fahr-
enheit, Btu system is still widely used in the United States, there is increasing
impetus to institute the SI (Systéme International d’Unités) units as a worldwide
standard. In this system, the fundamental units are meter, newton, kilogram
mass, second, and degrees Celsius; a ‘‘thermal’’ energy unit is not used; i.e.,
the joule (newton-meter) becomes the energy unit used throughout. The watt
(joules per second) is the unit of power in this system. In the SI system, the
standard units for thermal conductivity would become

kin W/m - °C
and the convection heat-transfer coefficient would be expressed as
hin W/m? - °C.

Because SI units are so straightforward we shall use them as the standard
in this text, with intermediate steps and answers in examples also given par-
enthetically in the Btu~pound mass system. A worker in heat transfer must
obtain a feel for the order of magnitudes in both systems. In the SI system the
concept of g. is not normally used, and the newton is defined as ‘

1N = 1kg - m/s? (1-16)

Even so, one should keep in mind the physical relation between force and mass
as expressed by Newton’s second law of motion.

The SI system also specifies standard multiples to be used to conserve space
when numerical values are expressed. They are summarized in Table 1-3.
Standard symbols for quantities normally encountered in heat transfer are sum-
marized in Table 1-4. Conversion factors are given in Appendix A.

EXAMPLE 1-1 Conduction through copper plate

One face of a copper plate 3 cm thick is maintained at 400°C, and the other face is
maintained at 100°C. How much heat is transferred through the plate?
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Table 1-4 S Quantities Used in Heat Transfer

Quantity Unit abbreviation
Force N (newton)
Mass kg (kilogram mass)
Time s (second)
Length m (meter)
Temperature °CorK
Energy J (joule)
Power W (watt)
Thermal conductivity W/m - °C
Heat-transfer coefficient W/m? - °C
Specific heat Jikg - °C
Heat flux W/m?

Solution
From Appendix A the thermal conductivity for copper is 370 W/m - °C at 250°C. From
Fourier’s law
q dT
L= —k—
A dx
Integrating gives

q _ _ AT _ —(370)(100 — 400)

4 v T 107 = 3.7 MW/m? [1.172 x 10° Bw/h - ft’]
X

EXAMPLE 1-2 Convection calculation
Air at 20°C blows over a hot plate 50 by 75 cm maintained at 250°C. The convection
heat-transfer coefficient is 25 W/m? - °C. Calculate the heat transfer.
Solution
From Newton’s law of cooling
q=hAT, - T
(25)(0.50)(0.75)(250 — 20)
2.156 kW [7356 Btu/h]

i

i

EXAMPLE 1-3 Multimode heat transfer

Assuming that the plate in Ex. 1-2 is made of carbon steel (1%) 2 cm thick and that 300
W is lost from the plate surface by radiation, calculate the inside plate temperature.

Solution

The heat conducted through the plate must be equal to the sum of convection and
radiation heat losses:
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Gcond = Geonv t Grad oo
kA ST - 2156 + 0.3 = 2.456 kW !
Ax

_(-2A00.02) o o
= ——(0.5)(0'75)(43) = -3.05°C [-5.49°C} ‘
where the value of & is taken from Table 1-1. The inside plate temperature is therefore f

T, = 250 + 3.05 = 253.05°C

u EXAMPLE 1-4 Heat source and convection
An electric current is passed through a wire 1 mm in diameter and 10 cm long. The I .
wire is submerged in liquid water at atmospheric pressure, and the current is increased .
until the water boils. For this situation # = 5000 W/m? - °C, and the water temperature
will be 100°C. How much electric power must be supplied to the wire to maintain the
wire surface at 114°C?
Solution
The total convection loss is given by Eq. (1-8):
q=hAT, — T.)

For this problem the surface area of the wire is ' ‘ ,

A=mdL = m(1 x 107310 X 1072 = 3.142 X 10-* m? |
The heat transfer is therefore .

q = (5000 W/m? - °C)(3.142 x 10-* m?)(114 — 100) = 21.99 W [75.03 Btu/h]

and this is equal to the electric power which must be applied.

s EXAMPLE 1-5 Radiation heat transfer
Two infinite black plates at 800 and 300°C exchange heat by radiation. Calculate the |
heat transfer per unit area.

Solution
Equation (1-10) may be employed for this problem, so we find immediately
q/A aol* - T,Y !
(5.669 x 1078)(1073¢ — 5734
= 69.03 kW/m?3 [21,884 Btu/h - ft?]

» EXAMPLE 1-6 Total heat loss

A horizontal steel pipe having a diameter of 5 cm is maintained at a temperature of
50°C in a large room where the air and wall temperature are at 20°C. The surface o
emissivity of the steel may be taken as 0.8. Using the data of Table 1-2 calculate the
total heat lost by the pipe per unit length.
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Solution

The total heat loss is the sum of convection and radiation. From Table 1-2 we see that
an estimate for the heat transfer coefficient for free convection with this geometry and
air is h = 6.5 W/m? - °C. The surface area is 7 d L, so the convection loss per unit
length is

q/L]conv h(ﬂ'd) (Tw - Tw)
(6.5)(m)(0.05)(50 — 20) = 30.63 W/m

The pipe is a body surrounded by a large enclosure so the radiation heat transfer can
be calculated from Eq. (1-12). With 7, = 50°C = 323°K and 7> = 20°C = 293°K, we
have

i

gL = € (nd)o(T\* - T,
(0.8)(m)(0.05)(5.669 x-107¥)(323¢ — 293¢)

= 25.04 W/m

The total heat loss is therefore

q/L]\ul = q/L]conv + q/L]rad
= 30.63 + 25.04 = 55.67 W/m

In this example we see that the convection and radiation are about the same. To neglect
either would be a serious mistake.

1-6 COMPUTER SOLUTION OF HEAT-TRANSFER PROBLEMS

Many practical problems in heat transfer are solved with computer techniques.
In the chapters which follow, many examples will be presented to illustrate
setups for computer solutions, and many end-of-chapter problems will pose
interesting questions to be answered by the reader. But this is not to play down
analysis or appreciation of the fundamental principles of the subject. These
principles are even more important in computer work because the engineer
must be extra careful about input variables and have a notion of the correct
magnitude of the output from the computer.

The reader may note the absence of specific computer programs throughout
the text. There are many ways to approach a solution and the assumption is
made that the reader is ‘‘computer literate’’ and can handle the solution once
a basic algorithm is laid out. Thus, our general approach to computer-related
problems is to:

1. Set up the problem with diagrams and equations.
2. Set the objectives of the analysis.
3. Lay out a computation algorithm, where appropriate.

4. Obtain a solution.

5. If necessary, consider and evaluate alternative solutions.



22 Introduction

Radiant energy

Surrounding at Tg
Flow, T, Qeony = hA (Ty —Ty)

/ fTw

Heat conducted
through wall

Fig. 1-9 Combination of conduction, convection, and radiation heat
transfer.

B 1-7 SUMMARY

We may summarize our introductory remarks very simply. Heat transfer may
take place by one or more of three modes: conduction, convection, and radia-
tion. It has been noted that the physical mechanism of convection is related
to the heat conduction through the thin layer of fluid adjacent to the heat-
transfer surface. In both conduction and convection Fourier’s law is applicable,
although fluid mechanics must be brought into play in the convection problem
in order to establish the temperature gradient.

Radiation heat transfer involves a different physical mechanism—that of
propagation of electromagnetic energy. To study this type of energy transfer
we introduce the concept of an ideal radiator, or blackbody, which radiates
energy at a rate proportional to its absolute temperature to the fourth power.

It is easy to envision cases in which all three modes of heat transfer are
present, as in Fig. 1-9. In this case the heat conducted through the plate is
removed from the plate surface by a combination of convection and radiation.
An energy balance would give

dT
—kA —-] =hA (T, — T.) + F.FgoA (T,*—-T,%
dy wall
where T, = temperature of surroundings
T,, = surface temperature
T, = fluid temperature

To apply the science of heat transfer to practical situations, a thorough
knowledge of all three modes of heat transfer must be obtained.

H REVIEW QUESTIONS
1 Define thermal conductivity.

2 Define the convection heat-transfer coefficient.



10

"

Problems 23

Discuss the mechanism of thermal conduction in gases and solids.
Discuss the mechanism of heat convection.

What is the order of magnitude for the convection heat transfer coefficient in free
convection? Forced convection? Boiling?

When may one expect radiation heat transfer to be important?
Name some good conductors of heat; some poor conductors.

What is the order of magnitude of thermal conductivity for (a) metals, (b) solid
insulating materials, (c) liquids, (d) gases?

Suppose a person stated that heat can not be transfered in a vacuum. How do you
respond?

Review any standard text on thermodynamics and define: (a) heat, (b) internal
energy, (c) work, (d) enthalpy.

Define and discuss g..

W PROBLEMS

11

14

1-5

1-6

If 3 kW is conducted through a section of insulating material 1.0 m? in cross section
and 2.5 cm thick and the thermal conductivity may be taken as 0.2 W/m - °C,
compute the temperature difference across the material.

A temperature difference of 85°C is impressed across a fiber-glass layer of 13 cm
thickness. The thermal conductivity of the fiber glass is 0.035 W/m - °C. Compute
the heat transferred through the material per hour per unit area.

A truncated cone 30 cm high is constructed of aluminum. The diameter at the top
is 7.5 cm, and the diameter at the bottom is 12.5 cm. The lower surface is maintained
at 93°C; the upper surface, at 540°C. The other surface is insulated. Assuming one-
dimensional heat flow, what is the rate of heat transfer in watts?

The temperatures on the faces of a plane wall 15 cm thick are 370 and 93°C. The
wall is constructed of a special glass with the following properties: k = 0.78
Wim - °C, p = 2700 kg/m*, ¢, = 0.84 kJ/kg - °C. What is the heat flow through
the wall at steady-state conditions?

A certain superinsulation material having a thermal conductivity of 2 x 107*
W/m - °C is used to insulate a tank of liquid nitrogen that is maintained at — 320°F;
85.8 Btu is required to vaporize each pound mass of nitrogen at this temperature.
Assuming that the tank is a sphere having an inner diameter (ID) of 2 ft, estimate
the amount of nitrogen vaporized per day for an insulation thickness of 1.0 in and
an ambient temperature of 70°F. Assume that the outer temperature of the insu-
lation is 70°F.

Rank the following materials in'order of (a) transient response and (b) steady-state
conduction. Taking the material with the highest rank, give the other materials as
a percentage of the maximum: aluminum, copper, silver, iron, lead, chrome steel
(18% Cr, 8% Ni), magnesium. What do you conclude from this ranking?

A 50-cm-diameter pipeline in the Arctic carries hot oil at 30°C and is exposed to
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a surrounding temperature of —20°C. A special powder insulation 5 cm thick
surrounds the pipe and has a thermal conductivity of 7mW/m - °C. The convection
heat-transfer coefficient on the outside of the pipe is 12 W/m? - °C. Estimate the
energy loss from the pipe per meter of length.

A S-cm layer of loosely packed asbestos is placed between two plates at 100 and
200°C. Calculate the heat transfer across the layer.

A certain insulation has a thermal conductivity of 10 mW/m - °C. What thickness
is necessary to effect a temperature drop of 500°C? What would be the heat flow
under these conditions?

Assuming that the heat transfer to the sphere is Prob. 1-5 occurs by free convection
with a heat-transfer coefficient of 2.7 W/m? - °C, calculate the temperature dif-
ference between the outer surface of the sphere and the environment.

Two perfectly black surfaces are constructed so that all the radiant energy leaving
a surface at 800°C reaches the other surface. The temperature of the other surface
is maintained at 250°C. Calculate the heat transfer between the surfaces per hour
and per unit area of the surface maintained at 800°C.

Two very large parallel planes having surface conditions which very nearly ap-
proximate those of a blackbody are maintained at 1100 and 425°C, respectively.
Calculate the heat transfer by radiation between the planes per unit time and per
unit surface area.

Calculate the radiation heat exchange in 1 day between two black planes having
the area of the surface of a 2-ft-diameter sphere when the planes are maintained
at ~320 and 70°F. What does this calculation indicate in regard to Prob. 1-5?

Two infinite black plates at 500 and 100°C exchange heat by radiation. Calculate
the heat-transfer rate per unit area. If another perfectly black plate is placed
between the 500 and 100°C plates, by how much is the heat transfer reduced?
What is the temperature of the center plate?

Water flows at the rate of 0.5 kg/s in a 2.5-cm-diameter tube having a length of
3 m. A constant heat flux is imposed at the tube wall so that the tube wall
temperature is 40°C higher than the water temperature. Calculate the heat transfer
and estimate the temperature rise in the water. The water is pressurized so that
boiling can not occur.

Steam at 1 atm pressure (T,,, = 100°C) is exposed to a 30-by-30-cm vertical square
plate which is cooled such that 3.78 kg/h is condensed. Calculate the plate tem-
perature. Consult steam tables for any necessary properties.

Boiling water at 1 atm may require a surface heat flux of 3 x 10* Btu/h - ft for
a surface temperature of 232°F. What is the value of the heat-transfer coefficient?

A small radiant heater has metal strips 6 mm wide with a total length of 3 m. The
surface emissivity of the strips is 0.85. To what temperature must the strips be.
heated if they are to dissipate 1600 W of heat to a room at 25°C?

Calculate the energy emitted by a blackbody at 1000°C.

If the radiant flux from the sun is 1350 W/m?, what would be its equivalent
blackbody temperature?
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A 4.0-cm-diameter sphere is heated to a temperature of 150°C and is enclosed in
a large room at 20°C. Calculate the radiant heat loss if the surface emissivity is
0.65.

A flat wall is exposed to an environmental temperature of 38°C. The wallis covered
with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m - °C,
and the temperature of the wall on the inside of the insulation is 315°C. The wall
ioses heat to the environment by convection. Compuie the value of the convzction
heat-transfer coefficient which must be maintained on the outer surface of the
insulation to ensure that the cuter-surface temperature does not exceed 41°C.

Consider a wall heated by convection on one side and cooled by convestion on
the other side. Show that the heat-iransfer rate through the wail is
_ T, - T,
1= VinA + bxlkA + UhA

where T, and T are the fluid temperatures on each side of the wall and h, and A,
are the cerresponding heat-transfer coefficients.

One side of a plane wall is maintained at 100°C, while the other side is exposed
to a convection environment having T = 10°C and # = 10 W/m? - °C. The wall
has k = 1.6 W/m - °C and is 40 cm thick. Calculate the heat-transfer rate through
the wall.

How does the free-convection heat transfer from a vertical plate compare with
pure conduction through a vertical layer of air having a thickness of 2.5 cm and
a temperature difference the same at 7, — T.? Use information from Table 1-2.

A }-in steel plate having a thermal conductivity of 25 Btu/h - ft - °F is exposed
to a radiant heat flux of 1500 Btu/h - ft? in a vacuum space where the convection
heat transfer is negligible. Assuming that the surface temperature of the steel
exposed to the radiant energy is maintained at 100°F, what will be the other
surface temperature if all the radiant energy striking the plate is trzxiferred through
the plaie by conduction?

A solar radiant heat flux of 700 W/m? is absorbed in a mets! piate which is perfectly
inwilated on the back side. The convection heat-transfer coefficient on the plate
is 11 W/m? - °C, and the ambient air temperature is 30°C. Calculate the temper-
ature of the plate under equilibrium conditions.

A 5.0-cm-diameter cylinder is heated to a temperature of 200°C, and air at 30°C
is forced across it at a velocity of S0 m/s. If the surface emissivity is 0.7, calculate
the total heat loss per unit length if the walls of the enclosing room are at 10°C.
Comment on this calculation.

A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to
rocni air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by
both sides of the plate.

A black 20-by-20-cm plate has air forced over it at a velocity of 2 m/s and a
temperature of 0°C. The plate is placed in a large rcom whose walls are at30°C.
The back side of the plate is perfectly insulated. Calculate the tempera ur=-of the
plate resulting from the convection-radiation balance. Lise informatizn ffom Table
{-2. Are you surprised at the result?
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Two large black plates are separated by a vacuum. On the outside of one plate
is a convection environment of T = 80°C and h = 100 W/m? - °C, while the
outside of the other plate is exposed to 20°C and A = 15 W/m? - °C. Make an
energy balance on the system and determine the plate temperatures. For this
problem F; = F, = 1.0.

Using the basic definitions of units and dimensions given in Sec. 1-5, arrive at
expressions (a) to convert joules to British thermal units, (b) to convert dyne-
centimeters to joules, (c) to convert British thermal units to calories.

Beginning with the three-dimensional heat-conduction equation in cartesian co-
ordinates [Eq. (1-3a)], obtain the general heat-conduction equation in cylindrical
coordinates [Eq. (1-3b)].

A woman informs an engineer that she frequently feels cooler in the summer
when standing in front of an open refrigerator. The engineer tells her that she is
only ‘‘imagining things’’ because there is no fan in the refrigerator to blow the
cool air over her. A lively argument ensues. Whose side of the argument do you
take? Why?

A woman informs her engineer husband that ‘ot water w., freeze faster than
cold water.”” He calls this statement nonsense. She answers by saying that she
has actually timed the freezing process for ice trays in the home refrigerator and
found that hot water does indeed freeze faster. As a friend, you are asked to
settle the argument. s there any logical explanation for the woman’s observation?

An air-conditioned classroom in Texas is maintained at 72°F in the summer. The
students attend classes in shorts, sandals, and skimpy shirts and are quite com-
fortable. In the same classroom during the winter, the same students wear wool
slacks, long-sleeve shirts, and sweaters and are equally comfortable with the
room temperature maintained at 75°F. Assuming that humidity is not a factor,
explain this apparent anomaly in ‘‘temperature comfor!.”

Write the simplified heat-conduction equation for (a) steady one-dimensional heat
flow in cylindrical coordinates in the azimuth (¢) direction and (b) steady one-
dimensional heat flow in spherical coordinates in the azimuth (¢) direction.

A vertical cylinder 6 ft tall and 1 ft in diameter might be used to appreximate a
man for heat-transfer purposes. Suppose the surface temperature of the cylinder
is 78°F, h = 2 Btu/h - ft* - °F, the surface emissivity is 0.9, and the cylinder is
placed in a large room where the air temperature is 68°F and the wall temperature
is 45°F. Calculate the heat lost from the cylinder. Repeat for a wall temperature
of 80°F. What do you conclude from these calculations? N
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CONDUCTION—
ONE DIMENSION

H 2.1 INTRODUCTION

We now wish to examine the applications of Fourier’s law of heat condudtion
to calculation of heat flow in some simple one-dimensional systems. Several
different physical shapes may fall in the category of one-dimensional systems:
cylindrical and spherical systems are one-dimensional when the temperature
in the body is a function only of radial distance and is independent of azimuth
angle or axial distance. In some two-dimensional problems the effect of a
second-space coordinate may be so small as to justify its neglect, and the
multidimensional heat-flow problem may be approximated with a one-dimen-
sional analysis. In these cases the differential equations are simplified, and we
are led to a much easier solution as a result of this simplification.

2.2 THE PLANE WALL

First consider the plane wall where a direct application of Fourier’s law [Eq.
(1-1)] may be made. Integration yields

kA
9= "3 (I, - Ty -1
x

when the thermal conductivity is considered constant. The wall thickness is

Ax, and T, and T, are the wall-face temperatures. If the thermal conductivity

varies with temperature according to some linear relation k = ko(1 + BT), the

resultant equation for the heat flow is
koA

q = _K;[(TZ_TI)+

Bors - Tﬁ)] (22)
if more than one material is present, as in the multilayer wall shown in Fig.
2-1. the analysis would proceed as follows: The temperature gradients in the
three materials are shown, and the heat flow may be written 27
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TZ—TI T3_T2 T4‘°T3
= —kgA S = A 2 = g 3
9 4 AXA BA AXB ‘ AXC
Note that the heat flow must be the same through all sections.
Solving these three equations simultaneously, the heat flow is written

_ T, - T,
" Axuk4A + AxglksA + AxclkoA

At this point we retrace our development slightly to introduce a different
conceptual viewpoint for Fourier’s law. The heat-transfer rate may be consid-
ered as a flow, and the combination of thermal conductivity, thickness of
material, and area as a resistance to this flow. The temperature is the potential,
or driving, function for the heat flow, and the Fourier equation may be written

q (2-3)

Heat flow = thermal potentia‘l difference (2-4)
thermal resistance

arelation quite like Ohm'’s law in electric-circuit theory. In Eq. (2-1) the thermal
resistance is Ax/kA, and in Eq. (2-3) it is the sum of the three terms in the
denominator. We should expect this situation in Eq. (2-3) because the three
walls side by side act as three thermal resistances in series. The equivalent
electric circuit is shown in Fig. 2-1b.

The electrical analogy may be used to solve more complex problems in-
volving both series and parallel thermal resistances. A typical problem and its
analogous electric circuit are shown in Fig. 2-2. The one-dimensional heat-flow
equation for this type of problem may be written

_ AToverall (2_5)
2Ry,
Temperature —_—
‘ profile R, Ry Re
O—AMN—O——AAA——O——AAA—O
Toosy Ty Tooag T
kA kgA koA

®)
Fig. 2.1 One-dimensional heat transfer througti a somposite wsll and electrical analog.
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th)

Fig. 2-2 Series and parallel one-dimensiona! heat transfer through a com-
posite wall and electrical analog

where the Ry, are the thermal resistances of the varicus meterials. The units
for the thermal resistance are °C/W or °F - h/Btu.

It is well to mention that in some systems like that in Fig. 2-2 two-dimensional
heat low may result if the thermal conductivities of materials B, C, and D
differ by an appreciable amount. In these cases other techniques must be
employed to effect a solution.

2-3 INSULATION AND R VALUES

In Chap. 1 we noted that the thermal conductivities for a number of insulating
materials are given in Appendix A. In classifying the performance of insulation,
it is a common practice in the building industry to use a term called the R
value, which is defined as

_ AT
T glA

The units for R are °C - m*W or °F - ft2 - h/Btu. Note that this differs from
the thermal-resistance concept discussed above in that a heat fiow per unit
area is used.

At this point it is worthwhile to classify insylation materials in terms of their
application and allowable temperature ranges. Table 2-1 furnishes such infor-
mation and may be used as a guide for the selection of insulzting materials.

(2-6)
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Table 2-1 Insulation Types and Applications

Thermal
Temperature  conductivity, Density,
Type range, °C mW/m - °C  kg/m?® Application
L
1 Linde evacuated —240-1100 0.0015-0.72 Variable Many
superinsulation
2 Urethane foam ~ 180-150 16-20 25-48 Hot and cold pipes
3 Urethane foam -170-110 16-20 32 Tanks
4 Cellular glass blocks —200-200 29-108 110-150 Tanks and pipes
5 Fiber-glass blanket —-80-290 22-78 10-50  Pipe and pipe fittings
for wrapping
6 Fiber-glass blankets -170-230 25-86 10-50  Tanks and
equipment
7 Fiber-glass preformed 1 50-230 32-55 10-50 Piping
shapes
8 Elastomeric sheets —-40-100 36-39 70-100 Tanks
9 Fiber-glass mats 60-370 30-55 10-50  Pipe and pipe fittings
10 Elastomeric --40-100 36-39 70-100 Pipe and fittings
preformed shapes
11 Fiber glass with vapor -5-70 29-45 10-32 Refrigeration lines
bairier blanket
12 Fiber glass without to 250 29-45 24-48  Hot piping
vapor barrier jacket
13 Fiber-glass boards 20450 33-52 25-100 Boilers, tanks, heat
exchangers
14 Cellular glass blocks 20-500 29-108 110-150 Hot piping
and boards
15 Urethane foam blocks 100-150 16-20 24-65 Piping
and boards
16 Mineral fiber to 650 35-91 125-160  Hot piping
preformed shapes
17 Mineral fiber blankets to 750 37-81 125 Hot piping
I8 Mineral wool blocks 450-1000 52-130 175-290 Hot piping
19 Calcium silicate 230-1000 32-85 100-160  Hot piping, boilers,
blocks, boards chimney linings
20 Mineral fiber blocks to 1100 '52-130 210 Boilers and tanks

2-4 RADIAL SYSTEMS—CYLINDERS

Consider a long cylinder of inside radius r;, outside radius r,, and length L,
such as the one shown in Fig. 2-3. We expose this cylinder to a temperature
differential 7; — T, and ask what the heat flow will be. For a cylinder with
length very large compared to diameter, it may be assumed that the heat flows
in a radial direction, so that the only space coordinate needed to specify the
system is r. Again, Fourier’s law is used by inserting the proper area relation.
The area for heat flow in the cylindrical system is R

A, = 21rrL
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_intpir) Fig.2-3 One-dimensional heat flow through a hol-
W omkL low cylinger and electrical analog.

so that Fourier’s law is written

., dT
q, = — KA, o
or (2-7)
qg- = —217er‘2—3

with the boundary conditions
T=1T, atr = r,
T=1T, atr =r,
The solution to Eq. (2-7) is

2mkL(T, — T

2-8
In (r,/r:) (2-8)

and the thermal resistance in this case is

L In (@ lr;
Ry = “L'_)
2mkL
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q
———r
T R, 5 Rp T, Re T4
O— MN—O0—AAA—O—AAA—0O
In(ryfr)) In (r3/r;) tn (ry/r3)
nk, L kgl mkeL
(@) )

Fig. 2-4 One-dimensional heat flow through muitiple cylindrical sections and electrica
analog.

The thermal-resistance concept may be used for multiple-layer cylindrical walls
Just at it was used for plane walls. For the three-layer system shown in Fig.
2-4 the solution is

27TL(T| - T4)
In (rz/r|)/kA + In (r3/rz)/1(g + ‘n (r4/l'3)//\'c‘

qg = (2-9)

The thermal circuit is shown in Fig. 2-4b.
Spherical systems may also be treated as one-dimensional when the tem-
perature is a function of radius only. The heat flow is then

_ 4wk(T, ~ T,)

o Vry = 1r, (2-10)

The derivaticn of Eq. (2-10) is left as an exercise.

EXAMPLE 2-1 Muliilayer conduction

An exterior wall of a house may be approximated by a 4-in layer of common brick
[k = 0.7 W/m - °C] followed by a 1.5-in layer of gypsum plaster [k = 0.48 W/m - °C].
What thickness of loosely packed rock-wool insutation [k = 0.065 W/m - °C} should be
added to reduce the heat lcss (or gain) threagh the wall by 80 percent?

Solution
The overall heat loss will be given by
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Because the heat loss with the rock-wogol insulation will be only 20 percent (80 percent
reduction) of that before insulaticn

g with insulation _ 2R, without insulation
g without insulation ' 3R, with insulation

We have for the brick and plaster, for unit area,

Ax  (4)(0.0254)

= — = ———— = 2 . 9

R, X 0.7 = 0.145 m? - °C/W
o Ax _ (1.5)0.0254) _ 2.0

R, = i 0481 " 0.079 m? - °C/W

so that the thermal resistance without insulation is

R = 0.145 + 0.079 = 0.224 m*> - °C/W

0.224

= 1122 m? - °C/W
== Li22m? - °C

Then R with insulation =

and this represents the sum of our previous value and the resistance for the rock wool

1.22 = 0.224 + R,

Ax Ax
R,, = 0.898 = K - 0065
sothat Ax,, = 0.0584 m = 2.30in

EXAMPLE 2-2 Muitilayer cylindrical system

A thick-walled tube of stainless steel [18% Cr, 8% Ni, k = 19 W/m - °C] with 2-cm
inner diameter (ID) and 4-cm outer diameter (OD) is covered with a 3-cm layer of
asbestos insulation [k = 0.2 W/m - °C]. If the inside wall temperature of the pipe is
maintained at 600°C, calculate the heat loss per meter of length.

Stainless steel

7, = 600°C

Asbestos T, =100°C
T, T,
O——AMN——0 MN—0

In(ry/ry) In(rs/ry)

amksL 2k, L Fig. Ex. 2-2
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Solution

The accompanying figure shows the thermal network for this problem. The heat flow
is given by
2m(T, — 1)) 27(600 — 100)

In olrik. + In (riryk, — (n 2019 + (npyo2 ~ 080 W/m

g:—
L

Convection Boundary Conditions
We have already seen in Chap. 1 that convection heat transfer can be calculated
from :

Yeonv = hA (Tu - Tx)

An electric-resistarrce analogy can also be drawn for the convection process
by rewriting the equation as
T, - T,

qeonv = 1/hA (2-1”

where now the 1/hA term becomes the convection resistance.

2-% THE OVERALL HEAT-TRANSFER COEFFICIENT
Consider the plane wall shown in Fig. 2-5 exposed to a hot fluid A on one side
and a cooler fluid B on the other side. The heat transfer is expressed by

kA
q = hA(T, — T)) = B (T, — T)) = hhA(T, — Tp)
The heat-transfer process may be represented by the resistance network in Fig.
2-5b, and the overall heat transfer is calculated as the ratio of the overall
temperature difference to the sum of the thermal resistances:

TA - TB
VhiA + AxlkA + 1/hA

q = (2-12)

Observe that the value 1/hA is used to represent the convection resistance.
The overall heat transfer by combined conduction and convection is frequently
expressed in terms of an overall heat-transfer coefficiest U, defined by the
relation

q = UA AToveralll (2-]3)

where A is some suitable area for the heat flow. In accordance with Eq.
(2-12), the overall heat-transfer coefficient would be

1
U= Vh, + Axtk + /h;
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Fluid 4

bluid 8

ta (b}

Fig. 2-5 Overall heat transfer through a plane wall.

For a hollow cylinder exposed to a convection environment on its inner and
outer surfaces, the electric-resistance analogy would appear as in Fig. 2-6
where, again, T4 and Tj are the two fluid temperatures. Note that the area for
convection, is not the same for both fluids in this case, these areas depending
on the inside tube diameter and wall thickness. In this case the overall heat

transfer would be expressed by

T,; - TB
1 + !—n—(r{,/r,') l

q:

+
hA, 2wkl h,A,

=

q
-

7, T, T, Ty
O—MW—O— MN—O—MWN—O0
e Intr,r) o
hA, dakL h,A,
th)

Fig. 2-6 Resistance analogy for hollow cylinder with convection boundaries.

(2-14)
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in accordance with the thermal network shown in Fig. 2-6. The terms A; and
A, represent the inside and outside surface areas of the inner tube. The overall
heat-transfer coefficient may be based on either the inside or the outside area
of the tube. Accordingly,

1

Ui = T A | AT @2-15)
h,' 27TkL Ao ho

U, = 1 (2-16)
T Al AnGJr) 1
A; h; 2mkL h,

Calculations of the convection heat-transfer coefficients for use in the overall
heat-transfer coefficient are made in accordance with the methods described
in later chapters. Some typical vglues of the overall heat-transfer coefficient
are given in Table 10-1.

B 2.6 CRITICAL THICKNESS OF INSULATION

Let us consider a layer of insulation which might be installed around a circular
pipe, as shown in Fig. 2-7. The inner temperature of the insulation is fixed at
T;, and the outer surface is exposed to a convection environment at ... From
the thermal network the heat transfer is
_ 27T, - T.)
T In(r ; 1
(ro/r) +

k roh

(2-17)

Now let us manipulate this expression to determine the outer radius of insulation
r, which will maximize the heat transfer. The maximization condition is

1 1
-2#7L(T, - T,,)(.k— )

g, ro
dr, [ln (r,/r) . 1 2
k roh
Toe
O~ N——O—=— N N—C
ln(rE/r[) |

ZokL 2nr,Lh 9. 2-7 Critical insulation thickness.
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which gives the resuit
(2-18)

Equation (2-{8) expresses the critical-radius-of-insulation concept. If the outer
radius is icss than the value given by this equation, then the heat transfer will
be increased by adding more insulation. For outer radii greater thai the critical
value an increase in insulation thickness will cause a decrease in heat transfer.
The central concept is that for sufficiently small values of / the convection
heat loss may actually increase with the addition of insulation because of in-
creased surface area.

m EXAMPLE 2-3 Critical insulation thickness

Calculate the critical radius of insulation for zsbestos [k = 0.}7 W/m - °C] surrounding
a pipe and exposed to room air at 20°C with & = 3.0 W/m? - °C. Calculate the heat loss
from a 260°C, 5.0-cm-diameter pipe when covered with the critical radius of insulation
and without insulation.

Solution

From Eq. (2-18) we calculate r, as

k 0.17
== —=0.087m = 5.
W 30 m = 5.67 cm

r, =

The inside radius of the insulation is 5.0/2 = 2.5 cm, so the heat transfer is calculated
from Eq. (2-17) as

g 27200 — 20)

9= - = 105.

L n(5.67/25) 1 105.7 W/m
0.17 (0.0567)(3.0)

Without insulation the convection from the outer surface of the pipe is

= hQ2mr}T; - T} = (3.0)2m)(0.025)(200 — 20) ="84.8 W/m

~ie

So, the addition ¢f 3,17 cmi (5.67 - 2.5) of insulation actually increases the heat transfer
by 25 percent.

B 2.7 HEAT-SQURCE SYSTEMS

A number of intzresting applications of the principles of heat transfer are con-
cerned with systems in which heat may be generated internally. Nuclear re-
¥
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actors are one example; electrical conductors and chemically reacting systems
are others. At this point we shall confine our discussion to one-dimensional
systems, or, more specifically, systems where the temperature is a function of
only one spacz coordinate.

O Plane Wall with Heat Sources

Consider the plane wall with uniformly distributed heat sources shown in Fig.
2-8. The thickness of the wall in the x direction is 2L, and it is assumed that
the dimensions in the other directions are sufficiently large that the heat flow
may be considered as one-dimensional. The heat generated per unit volume is
g, and we assume that the thermal conductivity does not vary with temperature.
This situation might be produced in a practical situation by passing a current
through an electrically conducting material. From Chap. 1, the differential
equation which governs the heat flow is
d*T

4q
E + ; =90 (2-19)

For the boundary conditions we specify the temperatures on either side of the
wall, i.e., :

T=T, atx = =L (2-20)

The general solution to Eq. (2-19) is

= - Eq/?xz +Cx + G @2-21)

Fig. 2-8 Sketch illustrating one-dimensional con-
duction problem with heat generation.
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Since the temperature must be the sanie on each side of the wall, C, must be
zero. The temperature at the midplane is denoted by 7, and from Eq. (2-21;

Iy = G

The temperature distribution is therefore

— — — i‘ 2 -
T-T, % x (2-22a)
T — To _ X 2
or T. - T, = ( L) (2-22b)

a parabolic distribution. An expression for the midplane temperature T, may
be obtained through an energy balance. At steady-state conditions the total
heat generated must equal the heat lost at the faces. Thus

dT .
2 <—kA E]}ﬂ) = gA 2L

where A is the cross-sectional area of the plate. The temperature gradient at
the wall is obtained by differentiating Eq. (2-22b):

ar 2x 2
a]x:L = (Tw - TO)(P)]X=L = (Tw - TO)Z

2
Then KT, — Ty 7= qL

_ 9L
and To = P + T, (2-23)

This same result could be obtained by substituting T = T, at x = L into
Eq. (2-22a).

The equation for the temperature distribution could also be written in the
alternative form

T-T, 2
=1~ % (2-22¢)
0 1w

2-8 CYLINDER WITH HEAT SOURCES

Consider a cylinder of radius R with uniformly distributed hest sources and
constant thermal conductivity. If the cylinder is sufficiently long that the tem-
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perature may be considered a function of radius only, the appropriate differ- | !
ential equation may be obtained by neglecting the axial, azimuth, and time- ,
dependent terms in Eq. (1-3b),

T | 1dT

a1 q_ .
= et (2-24)

The boundary conditions are

T=T, atr = R

and heat generated equals heat lost at the surface: \
f
dT '
gnR*L = —k2wRL —] ‘
dr r=R

Since the temperature function must be continuous at the center of the cylinder,
we could specify that

ar
— =0 atr =0
dr
However, it will not be necessary to use this condition since it will be satisfied l:

automatically when the two boundary conditions are satisfied. |
We rewrite Eq. (2-24)

d*T 4T _ —gr

a2t Tk

r

and note that

LT 4T d (4T
a Tar e\ ar

Then integration yields !

dT _ —gr
ry =k T O
and =;‘ﬁ+c.lnr+c2



Cylinder with heat sources 41

From the second boundary condition above,

ary _ —4R _ -¢R G
dr|.-r 2k 2k R

Thus C; =0

We could also note that C, must be zero because at r = 0 the logarithm
function becomes infinite.
From the first boundary condition,

__'R2
T=T, = fk +C, atr=R

gR?
th = Tw + —_—
so that G, 4k

The final solution for the temperature distribution is then

T-T,=-YR - p (2-25a)
4k
or, in dimensionless form,
T-T, r\?
To - T, =1- (i) (2-25b)

where T, is the temperature at r = 0 and is given by

_ I’
L=%-+71, (2-26)

It is left as an exercise to show that the temperature gradient at r = 0 is zero.

For a hollow cylinder with uniformly distributed heat sources the appropriate
boundary conditions would be

T = T,' atr

T=1T, atr

r; (inside surface)

r, (outside surface)

The general solution is still

=————+C,lnr+C2
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Application of the new boundary conditions yields

_ _92_ r R
T T, % (r, r) + C,In Py 2-27)

where the constant C, is given by

T,' - To + q'(r,'z - )'02)[4,(

G = In (rir,)

(2-28)

EXAMPLE 2-4 Heat source with convection

A current of 200 A is passed through a stainless-steel wire [k = 19 W/m - °C} 3 mm in
diameter. The resistivity of the steel may be taken as 70 (2 - cm, and the length of the
wire is 1 m. The wire is submerged in a liquid at 110°C and experiences a convection
heat-transfer coefficient of 4 kW/m? - °C. Calculate the center temperature of the wire.

Solution

All the power generated in the wire must be dissipated by convection to the liquid:
P=I'R=q=hA(T. - T.) (a)
The resistance of the wire is calculated from

_ L _ (70 x_10-9(100) _
R=ry="0o152 0.09

where p is the resistivity of the wire. The surface area of the wire is 7 dL, so from
Eq. (a),

(200)2(0.099) = 400073 x 107 3)(IXT. — 110) = 3960 W
and T, = 215°C [419°F]
The heat generated per unit volume g is calculated from
P =4V = gmr’L

so that

3960
p o O 3 ? .3
q 715 x 10-9%(1) 560.2 MW/m? [5.41 x 107 Btu/h - ft°]

Finally, the center temperature of the wire is calculated from Eq. (2-26):

qr.? (5.602 x 10%)1.5 x 107?)? o
= A2 = + 215 = 231.6°C [449°F
To % + T, 7E) 1 [ ]
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B 2.9 CONDUCTION-CONVECTION SYSTEMS

The heat which is conducted through a body must frequently be removed (or
delivered) by some convection process. For example, the heat lost by con-
duction through a furnace wall must be dissipated to the surroundings through
convection. In heat-exchanger applications a finned-tube arrangement might
be used to remove heat from a hot liquid. The heat transfer from the liquid to
the finned tube is by convection. The heat is conducted through the material
and finally dissipated to the surroundings by convection. Obviously, an analysis
of combined conduction-convection systems is very important from a practical
standpoint.

We shall defer part of our analysis of conduction-convection systems to
Chap. 10 on heat exchangers. For the present we wish to examine some simple
extended-surface problems. Consider the one-dimensional fin exposed to a
surrounding fluid at a temperature T.. as shown in Fig. 2-9. The temperature
of the base of the fin is T,. We approach the problem by making an energy
balance on an element of the fin of thickness dx as shown in the figure. Thus

Energy in left face = energy out right face + energy lost by convection

The defining equation for the convection heat-transfer coefficient is recalled as
q = hA(T, — T.) (2-29)

where the area in this equation is the surface area for convection. Let the cross-
sectional area of the fin be A and the perimeter be P. Then the energy quantities
are

in left f: =q, = —kA —
Energy in left face = g I

(dqwnv =hPdx(T-T,)

£

!

S

9 Qo +dx

frrr—- \* L~

Base

Fig. 2-9 Sketch illustrating one-
dimensional conduction and con-
vection through a rectangular fin.

\_
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Energy out right face = g,.,., = —kA d__]:]
dx x+dx
dT 4T
=k (z t d*)
Energy lost by convection = hP dx(T — T.)

Here it is noted that the differential surface area for convection is the product
of the perimeter of the fin and the differential length dx. When we combine the
quantities, the energy balance yields

d*T hP
E - H (T-T.)=0 (2-30a)
Let 8 = T — T.. Then Eq. (2-30a) becomes
d?0 hP
e a 6=20 (2-30b)

One boundary condition is
0=0,=T, - T, atx =0

The other boundary condition depends on the physical situation. Several cases
may be considered:
case 1 The fin is very long, and the temperature at the end of the fin is es-

sentially that of the surrounding fluid.
case2 The fin is of finite length and loses heat by convection from its end.
case3 The end of the fin is insulated so that d7/dx = Oatx = L.

If we let m®> = hP/kA, the general solution for Eq. (2-30b) may be written
0 = Cie™™ + Cre™ (2-31)
For case 1 the boundary conditions are

8 = 6, atx =0
6=20 atx = o
and the solution becomes
0 T - Teo
9 _ = pmmx 2-32
0 To-T. ¢ 2-32)

For case 3 the boundary conditions are
6 = 00 atx = 0

de
d—;—o atx = L
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Thus b = Ci + (;
0= m(_Cle—mL + Cze'"L)

Solving for the constants C, and C,, we obtain

0 - mx mx
Z- £ + £ (2-33a)

6 | + e 2L | 4 emL

_ cosh [m(L - x)] (2-33b)

cosh mL

The hyperbolic functions are defined as

. et — e ¢ er + e~
sitnh x = ——— coshx = ————
2 2

sinh x et — e~
tanh x = = -
cosh x e + e~

The solution for case 2 is more involved algebraically, and the result is

I -T. coshm(L - x) + (hWmk) sinh m (L — x) (2-34)
T, - T. cosh mL + (h/mk) sinh mL’

All of the heat lost by the fin must be conducted into the base at x = 0.
Using the equations for the temperature distribution, we can compute the heat
loss from

An alternative method of integrating the convection heat loss could be used:
L L
g = [ AP(T - T.)dx = | npe ax

In most cases, however. the first equation is easier to apply. For case 1,

4 = —kA(—mbye ™) = VhPkA 6, (2-35)
For case 3,
= —kAG ! — !
q - o l + e‘Z'nL ] + e+2ml. (2‘36)

V hPkA 6, tanh mL

The heat flow for case 2 is

sinh mL + (h/mk) cosh mL
=V - T. . -37
9 hPkA (To L) cosh mL + (h/mk) sinh mL 2-37)

In the above development it has been assumed that the substantial temperature
gradients occur only in the x direction. This assumption will be satisfied if the
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fin is sufficiently thin. For most fins of practical interest the error introduced
by this assumption is less than 1 percent. The overall accuracy of practical fin
calculations will usually be limited by uncertainties in values of the convection
coefficient 4. It is worthwhile to note that the convection coefficient is seldom
uniform over the entire surface, as has been assumed above. If severe non-
uniform behavior is encountered, numerical finite-difference techniques must
be employed to solve the problem. Such techniques are discussed in Chap. 3.

2-10 FINS

In the foregoing development we derived relations for the heat transfer from
a rod or fin of uniform cross-sectional area protruding from a flat wall. In
practical applications, fins may have varying cross-sectional areas and may be
attached to circular surfaces. In either case the area must be considered as a
variable in the derivation, and solution of the basic differential equation and
the mathematical techniques become more tedious. We present only the results
for these more complex situations. The reader is referred to Refs. 1 and 8 for
details on the mathematical methods used to obtain the solutions.

To indicate the effectiveness of a fin in transferring a given quantity of heat,
a new parameter called fin efficiency is defined by

actual heat transferred _
heat which would be transferred
if entire fin area were
at base temperature

Fin efficiency = 7y

For case 3 above, the fin efficiency becomes
VhPkA 6, tanh mL  tanh mL
N = = (2-38)

The fins discussed above were assumed to be sufficiently deep that the heat
flow could be considered one-dimensional. The expression for mL may be

written
B }h_l’ _ 1h(2z + 21)
mL = kA~ kzt L

where z is the depth of the fin and 7 is the thickness. Now, if the fin is sufficiently
deep, the term 2z will be large compared with 2z, and

|2k _\/Z:h
mL = Nk = Vit

Multiplying numerator and denominator by L'? gives

2h
= 4 il 1
mL kLtL

Lt is the profile area of the fin, which we define as
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— 2h 372
so that mL kA,,,L (2-39)
We may therefore use the expression in Eq. (2-39) to compute the efficiency
of a fin with insulated tip as given by Eq. (2-38).

Harper and Brown [2] have shown that the solution in case 2 above may be
expressed in the same form as Eq. (2-38) when the length of the fin is extended
by one-half the thickness of the fin. A corrected length L. is then used in all
the equations which apply for the case of the fin with an insulated tip. Thus

t
L.=L + 5 (2-40)
The error which resuits from this approximation will be less than 8 percent
when
ht 172 l
— S -_— -
( 5 k) 5 (2-41)

If a cylindrical spine extends from a wall as shown in Fig. 2-10g, the
corrected fin length is calculated from
4
=L ﬂz/- L+ di4 (2-42)
Examples of other types of fins are shown in Fig. 2-10 according to Ref. 8.
Figure 2-11 presents a comparison of the efficiencles of a triangular fin and a

e
&G

Fig. 2-10 Different types of hnned surfaces. according to Kern and Kraus [8]: (a) Longitudinal
fin of rectangular profile; {b) cylindncal tube equipped with fins of rectangular profile; (c) longi-
tudinal fin of trapezoidal profile; () longitudinal fin of parabolic profile; (e) cylindrical tube equipped
with radial fin of rectangular profile; (f) cylindrical tube equipped with radial fin of truncated conical
profile; (g) cylindrical spine; (h) truncated conical spine; (i) parabolic spine.

(h) (i)
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L+ érectangular fin

L triangular fin

the rectangular fin
Am

1}
—~

{  triangular fin

Fin efficiency n,. percent

20 d JLL—

¢ 0f 1o 1S ro *% Fig. 2-11 Efficiencies of rectan-
N ; 2 .
L2 kA, ! qular and triangular fins

straight rectangular fin corresponding to case 2. Figure 2-12 shows the effi-
ciencies of circumferential fins of rectangular cross-sectional area. Notice that
the corrected fin lengths L, and profile area A., have been used in Figs. 2-11
and 2-12. We may note that as r»./r, — 1.0, the efficiency of the circumferential
fin becomes identical to that of the straight fin of rectangular profile.

It is interesting to note that the fin efficiency reaches its maximum value for
the trivial case of L = 0. or no fin at all. Therefore. we should not expect t¢
be able to maximize fin performance with respect to fin length. It 1s possible.
however. to maximize the efficiency with respect to the quantity of fin material
(mass, volume, or cost). and such a maximization process has rather obvious
economic significance. We have not discussed the subject of radiation heat
transfer from fins. The radiant transfer is an important consideration in a numbet
of applications, and the interested reader should consult Siegel and Howell [9'
for information on this subject.

In some cases a valid method of evaluating fin performance is to compare
the heat transfer with the fin to that which would be obtained without the fin.
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100 ’
L.=L+=
re=r *L

%0 A, =t ry)

60

40

I-in ethiciency ;. pereent

1.5

Lot ka, b

m

Fig. 2-12 Efficiencies of circumferential fins of rectangular profile. according to
Ref. 3

The ratio of these quantities is

q with fin _ anthO
q without fin hA L6,

where Ay is the total surface area of the fin and A, is the base area. For the
insulated tip fin described by Eq. (2-36),

Af = PL
Ab = A
and the heat ratio would become

g with fin  tanh mL
g without fin  VhA/kP

Conditions When Fins Do Not Help

At this point we should remark that the installation of fins on a heat-transfer
surface will not necessarily increase the heat-transfer rate. If the value of A,
the convection coefficient, is large, as it is with high-velocity fluids or boiling
liquids, the fin may produce a reduction in heat transfer because the conduction
resistance then represents a larger impediment to the heat flow than the con-
vection resistance. To illustrate the point, consider a stainless-steel pin fin
which has k = 16 W/m - °C, L = 10 cm, d = 1 cm and which is exposed to
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a boiling-water convection situation with £ = 5000 W/m? - °C. From Eq.
(2-36) we can compute

g with fin  tanh mL
q without fin  \VhA/KP

-2 12
tanh{[sooo’”(l x 10 )(4)] 10 x 10-2)}

167(1 X 1072)2

[sooom X 10-2)2]"‘ \
@(16)w(1 x 107?)

= 1.13

Thus, this rather large pin produces an increase of only 13 percent in the heat
transfer. '

Still another method of evaluating fin performance is discussed in Prob. 2-
68. Kern and Kraus [8] give a very complete discussion of extended-surface
heat transfer. Some photographs of different fin shapes used in electronic cool-
ing applications are shown in Fig. 2-13.

s EXAMPLE 2-5 influence of thermal conductivity on fin temperature profiles _

Compare the temperature distributions in a straight fin of rectangular profile having a
thickness of 2 cm and a length of 10 cm and exposed to a convection environment with
h = 25 W/m? - °C, for three fin materials: copper [k = 385 W/m - °C], stainless steel
[k = 17 W/m - °C}, and glass [k = 0.8 W/m - °C]. Also compare the relative heat flows
and fin efficiencies.

Solution
We have

hP _ (25)m(0.02) _ 5000 i H
kA~ km(0.01)2 & '

The terms of interest are therefore

kP
Material kA m mL
Copper 12.99 3.604 0.3604
Stainless steel 294.1 17.15 1.715

Glass 6250 79.06 7.906
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Fig. 2-13 Some fin arrangements used in electronic cooling applications. (Courtesy
Wakefield Engineering Inc., Wakefieid, Mass.)

These values may be inserted into Eq. (2-33a) to calculate the temperatures at different
x locations along the rod, and the results are shown in the accompanying figure. We
notice that the glass behaves as a *‘very long’’ fin, and its behavior could be calculated
from Eq. (2-32). The fin efficiencies are calculated from Eq. (2-38) by using the corrected
length approximation of Eq. (2-40). We have

L.=L+-= 10+§= 11 cm [4.33in]
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The parameters of interest for the heat-flow and efficiency comparisons are now tabu-
lated as

Material hPkA mL.
Copper 0.190 0.3964
Stainless steel 0.0084 1.8865
Glass 39 x 10+ 8.697
'
To compare the heat flows we could either calculate the values from Eq. (2-36) for a ; \

unit value of 6, or observe that the fin efficiency gives a relative heat-Aow comparison "
because the maximum heat transfer is the same for all three cases; i.e., we are dealing

with the same fin size, shape, and value of k. We thus calculate the values of 7, from

Eq. (2-38) and the above values of mL..

q relative to
Material n, copper, %
Copper 0.951 100
Stainless steel 0.506 53.6
Glass 0.115 12.1

The temperature profiles in the accompanying figure can be somewhat misleading. The :
glass has the steepest temperature gradient at the base, but its much lower value of k
produces a lower heat-transfer rate.

Fig. Ex. 2-5 !
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s EXAMPLE 2-6

An aluminum fin [k = 200 W/m - °C] 3.0 mm thick and 7.5 cm long protrudes from a
wall, as in Fig. 2-9. The base is maintained at 300°C, and t.i1e ambient temperature is 50°C
with 4 = 10 W/m? - °C. Calculate the heat loss from the fin per unit depth of material.

Solution

We may use the approximate method of solution by extending the fin a fictitious length

/2 and then computing the heat transfer from a fin with insulated tip as given by Eq.
(2-36). We have

L =L+ t2=75+015=765cm [3.01in]
L JrP _ [h@z+ 207" \/ﬁ
T VkA ktz kt

when the fin depth z > 1. So,

_ [ @)(10)
(200)(3 x 1073

From Eq. (2-36), for an insuiated-tip fin
q = (tanh mL.) VhPkA 6, tanh mL.

12
] = 5.774

For a 1-m depth
A=(MD3 x 10 =3 x10>m?> [4.65in?]
and
(5.774)(200)(3 x 1073)300 — 50) tanh [(5.774)(0.0765)]
359 W/m [373.5 Btwh - ft]

<
i

= EXAMPLE 2-7

Aluminum fins 1.5 cm wide and 1.0 mm thick are placed on a 2.5-cm-diameter tube to
dissipate the heat. The tube surface temperature is 170°C, and the ambient-fluid tem-
perature is 25°C. Calculate the heat loss per fin for A = 130 W/m? - °C. Assume k =
200 W/m - °C for aluminum.

Solution

For this example we can compute the heat transfer by using the fin-efficiency curves
in Fig. 2-12. The parameters needed are

L.=L+1t2=15+005=155cm
ry, =252 =125cm

r=n+L.=125+ 155 =280 cm
roJry = 2.80/1.25 = 2.24

I

A, = t(ry — r) =(0.001)(2.8 — 1.25)(107%) = 1.55 x 10"* m?

h\" 130 2
/2 = 3/2 -
L (M ) (0.0155) [(200)“.55 v mﬂ)] 0.396

m
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From Fig. 2-12 n, = 82 percent. The heat which would be transferred if the entire fin
were at the base temperature is (both sides of fin exchanging heat)

Imax = 2‘"’(’2:2 - l.lz)h(To - a)
2mw(2.82 — 1.252)(10-4)(130)(170 — 25)
= 74.35 W [253.7 Btu/h]

The actual heat transfer is then the product of the heat flow and the fin efficiency:
Goce = (0.82)(74.35) = 60.97 W [208 Btu/h])

EXAMPLE 2-8 Rod with heat sources

A rod containing uniform heat sources per unit volume ¢ is connected to two temper-
atures as shown in the accompanying figure. The rod is also exposed to an environment
with convection coefficient 7 and temperature T.. Obtain an expression for the tem-
perature distribution in the rod.

T T,

~

qx q, tdx
_'I dx "_ Fig. Ex. 2-8

Solution

We first must make an energy balance on the element of the rod shown, similar to that
used to derive Eq. (2-30). We have

Energy in left face + heat generated in element
= energy out right face + energy lost by convection

dT | o g (4T, 4T
or ——kAz+qux— kA(dx+dx2dx)+thx(T )
Simplifying, we have
4T _ kP .. _ q_
T To+i=0 (a)
or,with @ = T — T. and m* = hP/kA
AL
dx+mo+k_0 b)
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We can make a further variable substitution as
0 = 8 — glkm?

so that our differential equation becomes

which has the general solution

@ = ce™™ + ce™

The two end temperatures are used to establish the boundary conditions:

9 =6,=T —-T, — glkm* = C, + G,
9 =0 =T, — T. — glkm* = Cie~™t + Cremt
Solving for the constants C, and C, gives

_ (fie*™t — Gemhe” ™ + (Bem — Gr)em™
- el — 1

ol

2-11 THERMAL CONTACT RESISTANCE

©

(d)

(e

Imagine two solid bars brought into contact as indicated in Fig. 2-14, with the
sides of the bars insulated so that heat flows only in the axial direction. The
materials may have different thermal conductivities, but if the sides are insu-
lated, the heat flux must be the same through both matenals under steady-state
conditions. Experience shows that the actual temperature profile through the
two materials varies approximately as shown in Fig. 2-14b. The temperature

contact-resistance

Fig.2-14 lllustrations of thermal-

(a)

physical situation; (b) temperature

() profile.
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drop at plane 2, the contact plane between the two materials, is said to be the
result of a thermal contact resistance. Performing an energy balance on the
two materials, we obtain
Tl - TZA TZA - TZB TZB - TJ
9= M 1/h.A A
_ T, - T,
Axa/ka A + 1/h A + AxglkgA

or q (2-43)
where the quantity 1/4 A is called the thermal contact resistance and A, is called
the contact coefficient. This factor can be extremely important in a number of
applications because of the many heat-transfer situations which involve me-
chanical joining of two materials.

The physical mechanism of contact resistance may be better understood by
examining a joint in more detail, as shown in Fig. 2-15. The actual surface
roughness is exaggerated to implement the discussion. No real surface is per-
fectly smooth, and the actual surface roughness is believed to play a central
role in determining the contact resistance. There are two principal contributions
to the heat transfer at the joint:

1. The solid-to-solid conduction at the spots of contact

2. The conduction through entrapped gases in the void spaces created by the
contact

The second factor is believed to represent the major resistance to heat flow,
because the thermal conductivity of the gas is quite small in comparison to that
of the solids.

Designating the contact area by A, and the void area by A,, we may write
for the heat flow across the joint

- TZA - TZB + k fA TZA - TZB — TZA - TZB
9= LokaA, + Lj2kgA, 07 L Vh.A
where L, is the thickness of the void space and ,is the thermal conductivity

of the fluid which fills the void space. The toral cross-sectional area of the bars
is A. Solving for h., the contact coefficient, we obtain

Fig. 2-15 Joint-roughness model for
analysis of thermal contact resistance.

-4
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| [A. 2kiks A,
B, o= — (=822 4 2k -
‘ LR<A ki + kg A f) (2-44)

In most instances, air is the fluid filling the void space and &, is small compared
with k, and k. If the contact area is small, the major thermal resistance results
from the void space. The main problem with this simple theory is that it is
extremely difficult to determine effective values of A., A,, and L, for surfaces
in contact.

From the above physical model, we may tentatively conclude:

1. The contact resistance should increase with a decrease in the ambient gas
pressure when the pressure is decreased below the value where the mean
free path of the molecules is large compared with a characteristic dimension
of the void space, since the effective thermal conductance of the entrapped
gas will be decreased for this condition.

2. The contact resistance should be decreased for an increase in the joint pres-
sure since this results in a deformation of the high spots of the contact
surfaces, thereby creating a greater contact area between the solids.

A very complete survey of the contact-resistance problem is presented in
Refs. 4, 6, 7, and 10. Unfortunately, there is no satisfactory theory which will
predict thermal contact resistance for all types of engineering materials, nor
have experimental studies yielded completely reliable empirical correlations.

Table 2-2 Contact Conductance of Typical Surfaces

1/h,
Temper- Pres-
Roughne. P
oughness ature, sure, h - ft2 - °F/ m? - °C/W
Surface type pin - pm °C atm Btu x 10¢
416 Stainless, ground, air 100 2.54 90-200 3-25 0.0015 2.64
304 Stainless, ground, air 45 1.14 20 40-70 0.003 5.28
416 Stainless, ground, 100 2.54 30-200 7 0.002 3.52
with 0.001-in brass
shim, air
Aluminum, ground, air 100 2.54 150 12-25 0.0005 0.88
10 0.25 150 12-25 0.0001 0.18
Aluminum, ground, with 100 2.54 150 12-200 0.0007 1.23
0.001-in brass shim,
air
Copper, ground, air 50 1.27 20 12-200 0.00004 0.07
Copper, milled-air 150 3.81 20 10-50 0.0001 0.18

Copper, milled, vacuum 10 025 30 7-70 0.0005 0.88
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This is understandable because of the many complex surface conditions which
may be encountered in practice.

Radiation heat transfer across the joint can also be important when high
temperatures are encountered. This energy transfer may be calculated by the
methods discussed in Chap. 8.

For design purposes the contact conductance values given in Table 2-2 may
be used in the absence of more specific information. Thermal contact resistance
can be reduced markedly, perhaps as much as 75 percent, by the use of a
*‘thermal grease’’ like Dow 340.

EXAMPLE 2-9

Two 3.0-cm-diameter 304 stainless-steel bars, 10 cm long, have ground surfaces and are
exposed to air with a surface roughness of about 1 um. If the surfaces are pressed
together with a pressure of 50 atm and the two-bar combination is exposed to an overall
temperature difference of 100°C, calculate the axial heat flow and temperature drop
across the contact surface.

Solution

The overall heat flow is subject to three thermal resistances, one conduction resistance
for each bar, and the contact resistance. For the bars

Ax _ (0.1)4) 2 g0
Ro =l = (63m0 x 10797 ~ 867TCW

From Table 2-2 the contact resistance is

The total thermal resistance is therefore
2R, = (2X8.679) + 0.747 = 18.105

and the overall heat flow is
9 =c5 = o= = 552W [18.83 Btu/h]

The temperature drop across the contact is found by taking the ratio of the contact
resistance to the total thermal resistance:

= L = ML 00) - C o
AT, = SR, AT = 18105 - 4.13°C  [39.43°F]
REVIEW QUESTIONS

1 What is meant by the term one-dimensional when applied to conduction problems?
2 What is meant by thermal resistance?

3 Why is the one-dimensional heat-flow assumption important in the analysis of fins?
4

Define fin efficiency.
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Why is the insulated-tip solution important for the fin problems?

What is meant by thermal contact resistance? Upon what parameters does this
resistance depend?

B PROBLEMS

2-1

2-2

2-5

2-6

A wall 2 cm thick is to be constructed from material which has an average thermal
conductivity of 1.3 W/m - °C. The wall is to be insulated with material having an
average thermal conductivity of 0.35 W/m-°C, so that the heat loss per square
meter will not exceed 1830 W. Assuming that the inner and outer surface tem-
peratures of the insulated wall are 1300 and 30°C, calculate the thickness of in-
sulation required.

A certain material 2.5 cm thick, with a cross-sectional area of 0.1 m?, has one side
maintained at 35°C and the other at 95°C. The temperature at the center plane of
the material is 62°C, and the heat flow through the material is 1 kW. Obtain an
expression for the thermal conductivity of the material as a function of temperature.

A composite wall is formed of a 2.5-cm copper plate, a 3.2-mm layer of asbestos,
and a 5-cm layer of fiber glass. The wall is subjected to an overall temperature
difference of 560°C. Calculate the heat flow per unit area through the composite
structure. -

Find the heat transfer per unit area through the composite wall sketched. Assume
one-dimensional heat fiow.

ks = 150 W/m-°C
/\5 = 30
ke = S0

kp = 70 q
—ps-
AH - A])

T=370°C

S

T =66°C

2.5 cm—bl L—7,5 umADL 5.0 cm*l Fig. P2-4

One side of a copper block 5 cm thick is maintained at 260°C. The other side is
covered with a layer of fiber glass 2.5 cm thick. The outside of the fiber glass is
maintained at 38°C, and the total heat flow through the copper-fiber-glass combi-
nation is 44 kW. What is the area of the siab?

An outside wall for a building consists of a 10-cm layer of common brick and a
2.5-cm layer of fiber glass [k = 0.05 W/m - °C]. Calculate the heat fiow through
the wall for a 45°C temperature differential.
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2-7

2-8

29

2-10

2-11

2-12

2-13

2-15

2-16

2-17

One side of a copper block 4 cm thick is maintained at 175°C. The other side is
covered with a layer of fiber glass 1.5 cm thick. The outside of the fiber glass is
maintained at 80°C, and the total heat flow through the composite slab is 300 W.
What is the area of the slab?

A plane wall is constructed of a material having a thermal conductivity that varies
as the square of temperature according to the relation k = ko(1 + BT?). Derive
an expression for the heat transfer in such a wall.

A certain material has a thickness of 30 cm and a thermal conductivity of 0.04
W/m - °C. At a particular instant in time the temperature distribution with x, the
distance from the left face, is T = 150x2 — 30x, where x is in meters. Calculate
the heat flow rates at x = 0 and x = 30 cm. Is the solid heating up or cooling
down?

A wall is constructed of 2.0 cm of copper, 3.0 mm of asbestos sheet [k = 0.166
W/m - °C}, and 6.0 cm of fiber glass. Calculate the heat flow per unit area for an
overall temperature difference of 500°C.

A certain building wall consists of 6.0 in of concrete [k = 1.2 W/m - °C], 2.0 in
of fiber-glass insulation, and § in of gypsum board [k = 0.05 W/m - °C]. The inside
and outside convection coefficients are 2.0 and 7.0 Btu/h - ft? - °F, respectively.
The outside air temperature is 20°F, and the inside temperature is 72°F. Calculate
the overall heat-transfer coefficient for the wall, the R value, and the heat loss
per unit area.

A wall is constructed of a section of stainless steel [k = 16 W/m - °C] 4.0 mm
thick with identical layers of plastic on both sides of the steel. The overall heat-
transfer coefficient, considering convection on both sides of the plastic, is 120
W/m? - °C. If the overall temperature difference across the arrangement is 60°C,
calculate the temperature difference across the stainless steel.

An ice chest is constructed of styrofoam [k = 0.033 W/m - °C] with inside di-
mensions of 25 by 40 by 100 cm. The wall thickness is 5.0 cm. The outside of
the chest is exposed to air at 25°C with k. = 10 W/m? - °C. If the chest is completely
filled with ice, calculate the time for the ice to completely melt. State your as-
sumptions. The heat of fusion for water is 330 kl/kg.

A spherical tank, 1 m in diameter, is maintained at a temperature of 120°C and
exposed to a convection environment. With A = 25 W/m? - °C and T.. =15°C,
what thickness of urethane foam should be added to ensure that the outer tem-
perature of the insulation does not exceed 40°C? What percentage reduction in
heat loss results from installing this insulation?

A hollow sphere is constructed of aluminum with an inner diameter of 4 cm and
an outer diameter of 8 cm. The inside temperature is 100°C and the outer tem-
perature is 50°C. Calculate the heat transfer.

Suppose the sphere in problem 2-15 is covered with a 1-cm layer of an insulating
material having k = 50 mW/m - °C and the outside of the insulation is exposed
to an environment with & = 20 W/m? - °C and T.. = 10°C. The inside of the sphere
remains at 100°C. Calculate the heat transfer under these conditions.

In Appendix A, dimensions of standard steel pipe are given. Suppose a 3-in sched-



2-18

2-19

2-21

2-23

2-24

2-25

2-26

2-27

P e e e s
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ule 80 pipe is covered with 1 in of an insulation having & = 60 mW/m - °C and
the outside of the insulation is exposed to an environment having h = 10 W/m? - °C
and T.. = 20°C. The temperature of the inside of the pipe is 250°C. For unit length
of the pipe calculate (a) overall thermal resistance and (b) heat loss.

A steel pipe with a 5-cm OD is covered with a 6.4-mm asbestos insulation [k = 0.096
Btu/h - ft - °F] followed by a 2.5-cm layer of fiber-glass insulation [k = 0.028
Btuw/h - ft - °F). The pipe-wall temperature is 315°C, and the outside insulation
temperature is 38°C. Calculate the interface temperature between the asbestos
and fiber glass.

Derive an expression for the thermal resistance through a hollow spherical shell
of inside radius r; and outside radius r, having a thermal conductivity k.

A 1.0-mm-diameter wire is maintained at a temperature of 400°C and exposed to
a convection environment at 40°C with h = 120 W/m? - °C. Calculate the thermal
conductivity which will just cause an insulation thickness of 0.2 mm to produce
a ‘‘critical radius.”” How much of this insulation must be added to reduce the
heat transfer by 75 percent from that which would be experienced by the bare
wire?

A 2.0-in schedule 40 steel pipe (see Appendix A) has & = 27 Btu/h - ft - °F. The
fluid inside the pipe has A = 30 Btu/h - ft2 - °F, and the outer surface of the pipe
is covered with 0.5-in fiber-glass insulation with k = 0.023 Btwh - ft - °F. The
convection coefficient on the outer insulation surface is 2.0 Btu/h - ft - °F. The
inner fluid temperature is 320°F and the ambient temperature is 70°F. Calculate
the heat loss per foot of length.

Derive a relation for the critical radius of insulation for a sphere.

A cylindrical tank 80 cm in diameter and 2.0 m high contains water at 80°C. The
tank is 90 percent full, and insulation is to be added so that the water temperature
will not drop more than 2°C per hour. Using the information given in this chapter,
specify an insulating material and calculate the thickness required for the specified
cooling rate.

A hot steam pipe having an inside surface temperature of 250°C has an inside
diameter of 8 cm and a wall thickness of 5.5 mm. It is covered with a 9-cm layer
of insulation having £k = 0.5 W/m - °C, followed by a 4-cm layer of insulation
having £ = 0.25 W/m - °C. The outside temperature of the insulation is 20°C.
Calculate the heat lost per meter of length. Assume k = 47 W/m - °C for the pipe.

A house wall may be approximated as two 1.2-cm layers of fiber insulating board,
a 8.0-cm layer of loosely packed asbestos, and a 10-cm layer of common brick.
Assuming convection heat-transfer coefficients of 15 W/m? - °C on both sides of
the wall, calculate the overall heat-transfer coefficient for this arrangement.

Calculate the R value for the following insulations: (a) urethane foam, (b) fiber-
glass mats, (¢) mineral wool blocks, (d) calcium silicate blocks.

An insulation system is to be selected for a furnace wall at 1000°C using first a
layer of mineral wool blocks followed by fiber-glass boards. The outside of the
insulation is exposed to an environment with A = 15 W/m? - °C and T.. = 40°C.
Using the data of Table 2-1 calculate the thickness of each insulating material

e

et e ennd
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2-28

2-30

2-31

2-32

2-33

2-34

2-38

such that the interface temperature is not greater than 400°C and the outside
temperature is not greater than 55°C. Use mean values for the thermal conduc-
tivities. What is the heat loss in this wall in watts per square meter?

Derive an expression for the temperature distribution in a plane wall having
uniformly distributed heat sources and one face maintained at a temperature T,
while the other face is maintained at a temperature T,. The thickness of the wall
may be taken as 2L.

Derive an expression for the temperature distribution in a plane: wall in which
distributed heat sources vary according to the linear relation

§g=4qfl +BT-T,)]

where g, is a constant and equal to the heat generated per unit volume at the
wall temperature T,.. Both sides of the plate are maintained at T.., and the plate
thickness is 2L.

A plane wall 6.0 cm thick generates heat internally at the rate of 0.3 MW/m>. One
side of the wall is insulated, and the other side is exposed to an environment at
93°C. The convection heat-transfer coefficient between the wall and the environ-
ment is 570 W/m? - °C. The thermal conductivity of the wall is 21 W/m - °C.
Calculate the maximum temperature in the wall.

Consider a shielding wall for a nuclear reactor. The wall receives a gamma-ray
flux such that heat is generated within the wall according to the relation

G = qoe™*
where g, is the heat generation at the inner face of the wall exposed to the gamma-
ray flux and a is a constant. Using this relation for heat generation, derive an
expression for the temperature distribution in a wall of thickness L, where the

inside and outside temperatures are maintained at 7; and T,, respectively. Also
obtain an expression for the maximum temperature in the wall.

Repeat Prob. 2-31, assuming that the outer surface is adiabatic while the inner
surface temperature is maintained at 7.

Rework Prob. 2-29 assuming that the plate is subjected to a convection environ-
ment on both sides of temperature T. with a heat-transfer coefficient k. T, is now
some reference temperature not necessarily the same as the surface temperature.

Heat is generated in a 2.5-cm-square copper rod at the rate of 35.3 MW/m?>. The
rod is exposed to a convection environment at 20°C, and the heat-transfer coef-
ficient is 4000 W/m? - °C. Calculate the surface temperature of the rod.

A plane wall of thickness 2L has an internal heat generation which varies according
to ¢ = §o cos ax, where g, is the heat generated per unit volume at the center
of the wall (x = 0) and a is a constant. If both sides of the wall are maintained
at a constant temperature of T,., derive an expression for the total heat loss from
the wall per unit surface area.

A certain semiconductor material has a conductivity of 0.0124 W/cm - °C. A
rectangular bar of the material has a cross-sectional area of 1 cm? and a length
of 3 cm. One end is maintained at a 300°C and the other end at 100°C, and the
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2-44

2-45

Problems @3

bar carries a current of 50 A. Assuming the longitudinal surface is insulated,
calculate the midpoint temperature in the bar. Take the resistivity as
1.5 x 1073 - cm.

The temperature distribution in a certain plane wall is
T-T
Tz - T|
where T, and T, are the temperatures on each side of the wall. If the thermal
conductivity of the wall is constant and the wall thickness is L, derive an expres-

sion for the heat generation per unit volume as a function of x, the distance from
the plane where T = T,. Let the heat generation rate be g, at x = 0.

=C, + Cx? + Gy

Electric heater wires are installed in a solid wall having a thickness of 8 cm and
k = 2.5 W/m - °C. The right face is exposed to an environment with A = 50
W/m? - °C and T. = 30°C, while the left face is exposed to & = 75 W/m? - °C and
T.. = 50°C. What is the maximum allowable heat generation rate such that the
maximum temperature in the solid does not exceed 300°C?

A 3.0-cm-thick plate has heat generated uniformly at the rate of 5 x 10° W/m?®.
One side of the plate is maintained at 200°C and the other side at 50°C. Calculate
the temperature at the center of the plate for k = 20 W/m - °C.

Heat is generated uniformly in a stainless steel plate having & = 20 W/m - °C.
The thickness of the plate is 1.0 cm and the heat generation rate is 500 MW/m>.
If the two sides of the plate are maintained at 100 and 200°C respectively, calculate
the temperature at the center of the plate.

A plate having a thickness of 4.0 mm has an internal heat generation of 200 MW/m?*
and a thermal conductivity of 25 W/m - °C. One side of the plate is insulated and
the other side is maintained at 100°C. Calculate the maximum temperature in the
plate.

A 3.2-mm-diameter stainless-steel wire 30 cm long has a voltage of 10 V impressed
on it. The outer surface temperature of the wire is maintained at 93°C. Calculate
the center temperature of the wire. Take the resistivity of the wire as 70 u{} - cm
and the thermal conductivity as 22.5 W/m - °C.

The heater wire of Ex. 2-4 is submerged in a fluid maintained at 93°C. The
convection heat-transfer coefficient is 5.7 kW/m? - °C. Calculate the center tem-
perature of the wire.

An electric current is used to heat a tube through which a suitable cooling fluid
flows. The outside of the tube is covered with insulation to minimize heat loss
to the surroundings, and thermocouples are attached to the outer surface of the
tube to measure the temperature. Assuming uniform heat generation in the tube,
derive an expression for the convection heat-transfer coefficient on the inside of
the tube in terms of the measured variables: voltage E, current I, outside tube
wall temperature To, inside and outside radii r, and r,, tube length L, and fluid
temperature T}.

Derive an expression for the temperature distribution in a sphere of radius r with
uniform heat generation g and constant surface temperature T,,.
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2-46

2-47

2-48

2-49

A stainless-steel sphere [k = 16 W/m - °C] having a diameter of 4 cm is exposed
to a convection environment at 20°C, A = 15 W/m? - °C. Heat is generated uni-
formly in the sphere at the rate of 1.0 MW/m>. Calculate the steady-state tem-
perature for the center of the sphere.

An aluminum-alloy electrical cable has k& = 190 W/m - °C, a diameter of 30 mm,
and carries an electric current of 230 A. The resistivity of the cable is 2.9 u{) - cm,
and the outside surface temperature of the cable is 180°C. Calculate the maximum
temperature in the cable if the surrounding air temperature is 15°C.

Derive an expression for the temperature distribution in a hollow cylinder with
heat sources which vary according to the linear relation

g =a+ br
with ¢; the generation rate per unit volume at r = r.. The inside and outside
temperatures are T = T,atr = rand T = T, atr = r,.

The outside of a copper wire having a diameter of 2’ mm is exposed to a convection
environment with & = 5000 W/m? - °C and T.. = 100°C. What current must be
passed through the wire to produce a center temperature of 150°C? Repeat for
an aluminum wire of the same diameter.

A hollow tube having an inside diameter of 2.5 cm and a wall thickness of 0.4
mm is exposed to an environment at & = 100 W/m? - °C and 7. = 40°C. What
heat generation rate in the tube will produce a maximum tube temperature of

~ 250°C for k = 24 W/m - °C?

251

2-52

2-53
2-54
2-55

2-56

2-57

Water flows on the inside of a steel pipe with an ID of 2.5 cm. The wall thickness
is 2 mm, and the convection coefficient on the inside is 500 W/m? - °C. The
convection coefficient on the outside is 12 W/m? - °C. Calculate the overall heat-
transfer coefficient. What is the main determining factor for U?

The pipe in Prob. 2-51 is covered with a layer of ashestos [k = 0.18 W/m - °C]
while still surrounded by a convection environment with & = 12 W/m? - °C. Cal-
culate the critical insulation radius. Will the heat transfer be increased or de-
creased by adding an insulation thickness of (a) 0.5 mm, (b) 10 mm?

Calculate the overall heat-transfer coefficient for Prob. 2-4.
Calculate the overall heat-transfer coefficient for Prob. 2-5.

Air at 120°C in a thin-wall stainless-steel tube with # = 65 W/m? - °C. The inside
diameter of the tube is 2.5 cm and the wall thickness is 0.4 mm. k = 18 W/m - °C
for the steel. The tube is exposed to an environment with A = 6.5 W/m? - °C and
T. = 15°C. Calculate the overall heat transfer coefficient and the heat loss per
meter of length. What thickness of an insulation having k = 40 mW/m - °C should
be added to reduce the heat loss by 90 percent?

An insulating glass window is constructed of two 5-mm glass plates separated by
an air layer having a thickness of 4 mm. The air layer may be considered stagnant
so that pure conduction is involved. The convection coefficients for the inner and
outer surfaces are 12 and 50 W/m? - °C respectively. Calculate the overall heat
transfer coefficient for this arrangement, and the R value. Repeat the calculation
for a single glass plate 5 mm thick.

A wall consists of a 1-mm layer. of copper, a 4-mm layer of 1 percent carbon
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steel, a 1-cm layer of asbestos sheet, and 10 cm of fiber-glass blanket. Calculate
the overall heat-transfer coefficient for this arrangement. If the two outside sur-
faces are at 10 and 150°C, calculate each of the interface temperatures.

A thin rod of length L has its two ends connected to two walls which are maintained
at temperatures 7, and T, respectively. The rod loses heat to the environment
at T.. by convection. Derive an expression (a) for the temperature distribution in
the rod and (b) for the total heat lost by the rod.

A rod of length L has one end maintained at temperature T, and is exposed to
an environment of temperature T.. An electrical heating element is placed in the
rod so that heat is generated uniformly along the length at a rate g. Derive an
expression (a) for the temperature distribution in the rod and (b) for the total heat
transferred to the environment. Obtain an expression for the value of g which
will make the heat transfer zero at the end which is maintained at 7.

One end of a copper rod 300 cm long is firmly connected to a wall which is
maintained at 200°C. The other end is firmly connected to a wall which is main-
tained at 93°C. Air is blown across the rod so that a heat-transfer coefficient of
17 W/m? - °C is maintained. The diameter of the rod is 12.5 mm. The temperature
of the air is 38°C. What is the net heat lost to the air in watts?

Verify the temperature distribution for case 2 in Sec. 2-9, i.e., that

T-T. coshm(l - x) + (h/mk) sinh m(L — x)
To — T cosh mL + (h/mk) sinh mL

Subsequently show that the heat transfer is

_ sinh mL + (h/mk) cosh mL
q = VhPkA(To = T-) oG T + (himk) sinh mL

An aluminum rod 2.5 cm in diameter and 15 cm long protrudes from a wall which
is maintained at 260°C. The rod is exposed to an environment at 16°C. The
convection heat-transfer coefficient is 15 W/m? - °C. Calculate the heat lost by
the rod.

Derive Eq. (2-35) by integrating the convection heat loss from the rod of case 1
in Sec. 2-9.

Derive Eq. (2-36) by integrating the convection heat loss from the rod of case 3
in Sec. 2-9.

A long, thin copper rod 6.4 mm in diameter is eyposed to an environment at 20°C.
The base temperature of the rod is 150°C. The heat-transfer coefficient between
the rod and the environment is 24 W/m? - °C. Calculate the heat given up by the
rod.

A very long copper rod [k = 372 W/m - °C] 2.5 cm in diameter has one end
maintained at 90°C. The rod is exposed to a fluid whose témperature is 40°C. The

"heat-transfer coefficient is 3.5 W/m? - °C. How much heat is lost by the rod?

An aluminum fin 1.6 mm thick is placed on a circular tube with 2.5-cm OD. The
fin is 6.4 mm long. The tube wall is maintained at 150°C, the environment tem-
perature is 15°C, and the convection heat-transfer coefficient is 23 W/m? - C.
Calculate the heat lost by the fin.
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2-72
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2-74
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The total efficiency for a finned surface may be defined as the ratio of the total
heat transfer of the combined area of the surface and fins to the heat which would
be transferred if this total area were maintained at the base temperature To. Show
that this efficiency can be calculated from

=1 A
m = A(l )

where 7, = total efficiency
A, = surface area of all fins
A = total heat-transfer area, including fins and exposed tube or
other surface
7, = fih efficiency

A triangular fin of stainless steel (18% Cr, 8% Ni) is attached to a plane wall
maintained at 460°C. The fin thickness is 6.4 mm, and the length is 2.5 cm. The
environment is at 93°C, and the convection heat-transfer coefficient is 28 Wim? - °C
Calculate the heat lost from the fin.

A 2.5-cm-diameter tube has circumferential fins of rectangular profile spaced at
9.5-mm increments along its length. The fins are constructed of aluminum and
are 0.8 mm thick and 12.5 mm long. The tube wall temperature is maintained at
200°C, and the environment temperature is 93°C. The heat-transfer coefficient is
110 W/m? - °C. Calculate the heat loss from the tube per meter of length.

A circumferential fin of rectangular cross section surrounds a 2.5-cm-diameter
tube. The length of the fin is 6.4 mm, and the thickness is 3.2 mm. The fin is
constructed of mild steel. If air blows over the fin so that a heat-transfer coefficient
of 28 W/m? - °C is experienced and the temperatures of the base and air are 260
and 93°C, respectively, calculate the heat transfer from the fin.

A straight rectangular fin 2.0 cm thick and 14 cm long is constructed of steel and
placed on the outside of a wall maintained at 200°C. The environment temperature
is 15°C, and the heat-transfer coefficient for convection is 20 W/m? - °C. Calculate
the heat lost from the fin per unit depth.

An aluminum fin 1.6 mm thick surrounds a tube 2.5 cm in diameter. The length
of the fin is 12.5 mm. The tube-wall temperature is 200°C, and the environment
temperature is 20°C. The heat-transfer coefficient is 60 W/m? - °C. What is the
heat lost by the fin?

Obtain an expression for the optimum thickness of a straight rectangular fin for
a given profile area. Use the simplified insulated-tip solution.

Derive a differential equation (do not solve) for the temperature distribution ina
straight triangular fin. For convenience take the coordinate axis as shown and
assume one-dimensional heat flow.

I

x=0 Fig. P2-75
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A long stainless-steel rod [k = 16 W/m - °C] has a square cross section 12.5 by
12.5 mm and has one end maintained at 250°C. The heat-transfer coefficient is 40
W/m? - °C, and the environment temperature is 90°C. Calculate the heat lost by
the rod.

A straight fin of rectangular profile is constructed of duralumin (94% Al, 3% Cu)
with a thickness of 2.4 mm. The fin is 19 mm long, and it is subjected to a
convection environment with # = 85 W/m® - °C. If the base temperature is 90°C
and the environment is at 25°C, calculate the heat transfer per unit length of fin.

A certain internal-combustion engine is air-cooled and has a cylinder constructed
of cast iron [k = 35 Btu/h - ft - °F]. The fins on the cylinder have a length of
# in and thickness of % in. The convection coefficient is 12 Btu/h - ft? - °F. The
cylinder diameter is 4 in. Calculate the heat loss per fin for a base temperature
of 450°F and environment temperature of 100°F.

A 1.6-mm-diameter stainless-steel rod [k = 22 W/m - °C] protrudes from a wall
maintained at 49°C. The rod is 12.5 mm long, and the convection coefficient is
570 W/m? - °C. The environment temperature is 25°C. Calculate the temperature
of the tip of the rod. Repeat the calculation for # = 200 and 1200 W/m? - °C.

A 2-cm-diameter glass rod 6 cm long [k = 0.8 W/m - °C] has a base temperature
of 100°C and is exposed to an air convection environment at 20°C. The temperature
at the tip of the rod is measured as 35°C. What is the convection heat-transfer
coefficient? How much heat is lost by the rod?

A straight rectangular fin has a length of 2.0 cm and a thickness of 1.5 mm. The
thermal conductivity is 55 W/m - °C, and it is exposed to a convection environment
at 20°C and & = 500 W/m? - °C. Calculate the maximum possible heat loss for a
base temperature of 200°C. What is the actual heat loss?

A straight rectangular fin has a length of 3.5 cm and a thickness of 1.4 mm. The
thermal conductivity is 55 W/m - °C. The fin is exposed to a convection environ-
ment at 20°C and & = 500 W/m? - °C. Calculate the maximum possible heat loss
for a base temperature of 150°C. What is the actual heat loss for this base tem-
perature?

A circumferential fin of rectangular profile is constructed of 1 percent carbon
steel and attached to a circular tube maintained at 150°C. The diameter of the fin
is S ¢cm, and the length is also 5 cm with a thickness of 2 mm. The surrounding
air is maintained at 20°C and the convection heat-transfer coefficient may be taken
as 100 W/m? - °C. Calculate the heat lost from the fin.

A circumferential fin of rectangular profile is constructed of aluminum and sur-
rounds a 3-cm-diameter tube. The fin is 2 ¢cm long and 1 mm thick. The tube wall
temperature is 200°C, and the fin is exposed to a fluid at 20°C with a convection
heat-transfer coefficient of 80 W/m? - °C. Calculate the heat loss from the fin.

A 1.0-cm-diameter steel rod (k = 20 W/m? - °C) is 20 ¢m long. It has one end
maintained at 50°C and the other at 100°C. It is exposed to a convection envi-
ronment at 20°C with & = 85 W/m? - °C. Calculate the temperature at the center
of the rod.

A straight rectangular fin of steel (1% C) is 2.6 cm thick and 17 cm long. It is
placed on the outside of a wall which is maintained at 230°C. The surrounding
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air temperature is 25°C,and the convection heat-transfer coefficient is 23 W/m? - °C.
Calculate the heat lost from the fin per unit depth and the fin efficiency.

A straight fin having a triangular profile has a length of 5 cm and a thickness of
4 mm and is constructed of a material having k = 23 W/m - °C. The fin is exposed
to surroundings with a convection coefficient of 20 W/m? - °C and a temperature
of 40°C. The base of the fin is maintained at 200°C. Calculate the heat lost per
unit depth of fin.

A circumferential aluminum fin is installed on a 1-in-diameter tube. The length
of the fin is 0.5 in and the thickness is 1.0 mm. It is exposed to a convection
environment at 30°C with a convection coefficient of 56 W/m? - °C. The base
temperature is 125°C. Calculate the heat lost by the fin.

A circumferential fin of rectangular profile is constructed of stainless steel (18%
Cr, 8% Ni). The thickness of the fin is 2.0 mm, the inside radius is 2.0 cm, and
the length is 8.0 cm. The base temperature is maintained at 135°C and'the fin is
exposed to a convection environment at 15°C with h = 20 W/m? - °C. Calculate
the heat lost by the fin.

A rectangular fin has a length of 2.5 cm and thickness of 1.1 mm. The thermal
conductivity is 55 W/m - °C. The fin is exposed to a convection environment at
20°C and h = 500 W/m? - °C. Calculate the heat loss for a base temperature of
125°C.

A 1.0-mm-thick aluminum fin surrounds a 2.5-cm-diameter tube. The length of
the fin is 1.25 cm. The fin is exposed to a convection environment at 30°C with
h = 75 W/m? - °C. The tube surface is maintained at 100°C. Calculate the heat
lost by the fin.

A glass rod having a diameter of 1 cm and length of S cm is exposed to a convection
environment at a temperature of 20°C. One end of the rod is maintained at a
temperature of 180°C. Calculate the heat lost by the rod if the convection heat-
transfer coefficient is 15 W/m? - °C,

A stainless steel rod has a square cross-section measuring 1 by 1 cm. The rod
length is 8 cm, and k = 18 W/m? - °C. The base temperature of the rod is 300°C.
The rod is exposed to a convection environment at 50°C with h = 45 W/m? - °C.
Calculate the heat lost by the rod and the fin efficiency.

Copper fins with a thickness of 1.0 mm are installed on a 2.5-cm-diameter tube.
The length of each fin is 12 mm. The tube temperature is 250°C and the fins are
exposed to air at 30°C with a convection heat-transfer coefficient of 120 W/m? - °C.
Calculate the heat lost by each fin.

A straight fin of rectangular profile is constructed of stainless steel (18% Cr, 8%
Ni) and has a length of 5 ¢m and a thickness of 2.5 cm. The base temperature is
maintained at 100°C and the fin is exposed to a convection environment at 20°C
with & = 47 W/m? - °C. Calculate the heat lost by the fin per meter of depth, and
the fin efficiency.

A circumferential fin of rectangular profile is constructed of Duralumin and sur-
rounds a 3-cm-diameter tube. The fin is 3 cm long and 1 mm thick. The tube wall
temperature is 200°C, and the fin is exposed to a fluid at 20°C with a convection
heat-transfer coefficient of 80 W/m? - °C. Calculate the heat loss from the fin.
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A circular fin of rectangular profile is attached to a 3.0-cm-diameter tube main-
tained at 100°C. The outside diameter of the fin is 9.0 cm and the fin thickness
is 1.0 mm. The environment has a convection coefficient of 50 W/m? - C and a
temperature of 30°C. Calculate the thermal conductivity of the material for a fin
efficiency of 60 percent.

A circumferential fin of rectangular profile having a thickness of 1.0 mm and a
length of 2.0 cm is placed on a 2.0-cm-diameter tube. The tube temperature is
150°C, the environment temperature is 20°C, and & = 200 W/m? - °C. The fin is
aluminum. Calculate the heat lost by the fin.

Two 1-in-diameter bars of stainless steel [k = 17 W/m - °C] are brought into
end-to-end contact so that only 0.1 percent of the cross-sectional area is in
contact at the joint. The bars are 7.5 cm long and subjected to an axial temper-
ature difference of 300°C. The roughness depth in each bar (L,/2) is estimated
to be 1.3 um. The surrounding fluid is air, whose thermal conductivity may be
taken as 0.035 W/m - °C for this problem. Estimate the value of the contact
resistance and the axial heat flow. What would the heat flow be for a continuous
15-cm stainless-steel bar?

When the joint pressure for two surfaces in contact is increased, the high spots
of the surfaces are deformed so that the contact area A, is increased and the
roughness depth L, is decreased. Discuss this effect in the light of the presen-
tation of Sec. 2-11. (Experimental work shows that joint conductance varies
almost directly with pressure.)

Two aluminum plates S mm thick with a ground roughness of 100 uin are bolted
together with a contact pressure of 20 atm. The overall temperature difference
across the plates is 80°C. Calculate the temperature drop across the contact joint.

Fins are frequently installed on tubes by a press-fit process. Consider a circum-
ferential aluminum fin having a thickness of 1.0 mm to be installed on a 2.5-cm-
diameter aluminum tube. The fin length is 1.25 cm, and the contact conductance
may be taken from Table 2-2 for a 100-uin ground surface. The convection
environment is at 20°C, and & = 125 W/m? - °C. Calculate the heat transfer for
each fin for a tube wall temperature of 200°C. What percentage reduction in heat
transfer is caused by the contact conductance?

An aluminum fin is attached to a transistor which generates heat at the rate of
300 mW. The fin has a total surface area of 9.0 cm? and is exposed to surrounding
air at 27°C. The contact conductance between transistor and fin is 0.9 x 107*
m? - °C/W, and the contact area is 0.5 cm2. Estimate the temperature of the
transistor, assumning the fin is uniform in temperature.

B REFERENCES

1 Schneider, P. J.: ““Conduction Heat Transfer,”” Addison-Wesley Publishing Com-
pany, Inc., Reading, Mass., 1955.

2 Harper, W. B., and D. R. Brown: Mathematical Equations for Heat Conduction
in the Fins of Air-cooled Engines, NACA Rep. 158, 1922.

3 Gardner, K. A.: Efficiency of Extended Surfaces, Trans. ASME, vol. 67, pp. 621-631,
1945.



10

Steady-state conduction-—one dimension

Moore, C. J.: Heat Transfer across Surfaces in Contact: Studies of Transients in
One-dimensional Composite Systems, Southern Methodist Univ., ThermallFluid
Sci. Ctr. Res. Rep. 67-2, Dallas, Tex., March 1967.

Ybarrondo, L. J., and J. E. Sunderland: Heat Transfer from Extended Surfaces.
Bull. Mech. Eng. Educ., vol. S, pp. 229-234, 1966.

Moore, C. J., Jr., H. A. Blum, and H. Atkins: Subject Classification Bibliography
for Thermal Contact Resistance Studies, ASME Pap. 68-WA/HT-18, December
1968.

Clausing, A. M.: Transfer at the Interface of Dissimilar Metals: The Influence of
Thermal Strain, Int. J. Heat Mass Transfer, vol. 9, p. 791, 1966.

Kern, D. Q., and A. D. Kraus: ‘*Extended Surface Heat Transfer,” McGraw-Hill
Book Company, New York, 1972.

Siegel, R., and J. R. Howell: *“Thermal Radiation Heat Transfer,”” 2d ed., McGraw-
Hill Book Company, New York, 1980.

Fried E.: Thermal Conduction Contribution to Heat Transfer at Contacts, *Thermal
Conductivity,” (R. P. Tye, ed.) vol. 2, Academic Press, Inc., New York, 1969.



STEADY-STATE
CONDUCTION—
MULTIPLE
DIMENSIONS

B 3-1 INTRODUCTION

In Chap. 2 steady-state heat transfer was calculated in systems in which the
temperature gradient and area could be expressed in terms of one space co-
ordinate. We now wish to analyze the more general case of two-dimensional
heat flow. For steady state, the Laplace equation applies.

T T

el 3-1)

assuming constant thermal conductivity. The solution to this equation may be
obtained by analytical, numerical, or graphical techniques.

The objective of any heat-transfer analysis is usually to predict heat flow or
the temperature which results from a certain heat flow. The solution to Eq. (3-
1) will give the temperature in a two-dimensional body as a function of the two
independent space coordinates x and y. Then the heat flow in the x and y
directions may be calculated from the Fourier equations

oT

g = x ; (3-2)
oT

q, = —kA, 6—); (3-3)

These heat-flow quantites are directed either in the x direction or in the y
direction. The total heat flow at any point in the material is the resultant of the
q. and g, at that point. Thus the total heat-flow vector is directed so that it is
perpendicular to the lines of constant temperature in the material, as shown in
Fig. 3-1. So if the temperature distribution in the material is known, we may
easily establish the heat flow.

7
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Fig. 3-1 Sketch showing the heat flow in two /
dimensions } l'

B 3-2 MATHEMATICAL ANALYSIS OF TWO-DIMENSIONAL
HEAT CONDUCTION
We first consider an analytical approach to a two-dimensional problem and
then indicate the numerical and graphical methods which may be used to ad-
vantage in many other problems. It is worthwhile to mention here that analytical
solutions are not always possible to obtain; indeed, in many instances they are
very cumbersome and difficult to use. In these cases numerical techniques are
frequently used to advantage. For a more extensive treatment of the analytical
methods used in conduction problems, the reader may consult Refs. 1, 2, 12,
and 13. , \'
/ Consider the rectangular plate shown in Fig. 3-2. Three sides of the plate ]

are maintained at the constant temperature T, and the upper side has some
temperature distribution impressed upon it. This distribution could be simply
a constant temperature or something more complex. such as a sine-wave dis-
tribution. We shall consider both cases.

To solve Eq. (3-1), the separation-of-variables method is used. The essential
point of this method is that the solution to the differential equation is assumed
to take a product form

Fig. 3-2 Isotherms and heat flow !
lines in a rectangular plate. j \
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T =XY where X = X(x) (34)
Y=Yy
The boundary conditions are then applied to determine the form of the functions
X and Y. The basic assumption as given by Eq. (3-4) can be justified only if it
is possible to find a solution of this form which satisfies the boundary conditions.

First consider the boundary conditions with a sine-wave temperature dis-
tribution impressed on the upper edge of the plate. Thus

T=Taty=20

T=T atx=90 (3-5)
T=T1atx w

H

l

X
T=T,sin|{—]+T
sm(w)_ 1 aty

where T,, is the amplitude of the sine function. Substituting Eq. (3-4) in (3-1)
gives

== =25 (3-6)

Observe that each side of Eq. (3-6) is independent of the other because x and
y are independent variables. This requires that each side be equal to some
constant. We may thus obtain two ordinary differential equations in terms of
this constant,

2

% +AX =0 (3-7
2

‘liiTY - AY =0 (3-8)

where A? is called the separation constant. Its value must be determined from
the boundary conditions. Note that the form of the solution to Egs. (3-7) and
(3-8) will depend on the sign of A?; a different form would also result if A?> were
zero. The only way that the correct form can be determined is through an
application of the boundary conditions of the problem. So we shall first write
down all possible solutions and then see which one fits the problem under
consideration.

For A2 = 0: X=C|+C2X
Y=0C; + Cyy 3-9)
T = (Cy + Cax)(C3 + Cay)

This function cannot fit the sine-function boundary condition, so that the A2 =
0 solution may be excluded.
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Fora2<0: X = Cse ™™ + Cge™
Y = C7cos Ay + Cg sin Ay (3-10)
T = (Cse > + Cg¢e**)(C; cos Ay + Cg sin Ay)

Again, the sine-function boundary condition cannot be satisfied, so this solution
is excluded also.

ForA2>0: X = Cycos Ax + Cyo sin Ax
Y=Cyqe™ + Clze“-" (3'11)
T = (C9 C{)S + C]o sin /\x)(C.,e"" + Cue"’)

Now, it is possible to satisfy the sjhe-function boundary condition; so we shall
attempt to satisfy the other conditions. The algebra is somewhat easier to handle
when the substitution

06=T-T,

is made. The differential equation and the solution then retain the same form
in the new variable 6, and we need only transform the boundary conditions.
Thus

0= aty =0
0= atx =0 3-12)
0= atx = W

X
0 = Tm ‘1 —_— =
sin aty = H

Applying these conditions, we have

0= (Cg Cos Ax + C|o sin AX)(C" + Clz) (a)
0= C'o(C”e"" + Cue"’) (b)
0= (Cg cos AW + C“) sin AW)(C"(?“A" + Clzek‘y) (C)
T,, sin %v{ = (Cy cOs Ax + Cyo sin Ax)(Crie” ¥ + CppeM¥) )
Accordingly, Ch = —-Cp
C9 =0

and from (¢),
0= C|0C|2 sin AW(CAy - e"‘»")
This requires that

sin AW =0 (3-13)
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Recall that A was an undetermined separation constant. Several values will
satisfy Eq. (3-13), and these may be written
nw
A= — 3-14
W ( )
where n is an integer. The solution to the differential equation may thus be
written as a sum of the solutions for each value of n. This is an infinite sum,
so that the final solution is the infinite series

9=T-T, = gl C, sin”—;’f sinh ﬁ:v_y (3-15)

where the constants have been combined and the exponential terms converted
to the hyperbolic function. The final boundary condition may now be applied:

nmH
w

. - . X .
T,, sin W—“f = > C,sin n—;}— sinh

n=1

which requires that C, = 0 for n > 1. The final solution is therefore
sinh (my/W) . [&x
= _— — ) + T 3-16
T'=ToGoh (e ™ (w) ! (3-16)

The temperature field for this problem is shown in Fig. 3-2. Note that the heat-
flow lines are perpendicular to the isotherms.
We now consider the set of boundary conditions

T =T, aty =0
=T, atx =0
T=T, atx = W
T=T, aty = H
Using the first three boundary conditions, we obtain the solution in the form

of Eq. (3-15):

T-T =3 C,sin f—v’;—" sinh "T"’,y- (3-17)

n=1

Applying the fourth boundary condition gives

nmH
w

,-T,=3 C, sin"—v’:f sinh (3-18)

n=1

This is a Fourier sine series, and the values of the C, may be determined by

expanding the constant temperature difference T, — T, in a Fourier series over
the interval 0 < x < W. This series is

2. 5 (=Dt + 1 nmx

- = (T, — T))— —— sin —

T, - T, = (I» 1) - > W

n=1

(3-19)
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Upon comparison of Eq. (3-18) with Eq. (3-19), we find that

2 ! (=D + 1
Cn = T (T = 1)) sinh (nmH/W) n

and the final solution is expressed as

T-17, 2 i (=Dt + 1 sinm sinh (nmy/W)
T,-T, =< n W sinh (nmH/W)

An extensive study of analytical techniques used in conduction heat transfer
requires a background in the theory of orthogonal functions. Fourier series are
one example of orthogonal functions, as are Bessel functions and other special
functions applicable to different geometries and boundary conditions. The in-
terested reader may consult one or more of the conduction heat-transfer texts
listed in the references for further information on the subject.

(3-20)

H 3-3 GRAPHICAL ANALYSIS

Consider the two-dimensional system shown in Fig. 3-3. The inside surface is
maintained at some temperature T,, and the outer surface is maintained at 7,.
We wish to calculate the heat transfer. Isotherms and heat-flow lines have been

(@)

)

Fig. 3-3 Sketch showing element used for curvilinear-square anal-
ysis of twe-dimensional heat flow.
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sketched to aid in this calculation. The isotherms and heat-flow lines form
groupings of curvilinear figures like that shown in Fig. 3-3b. The heat flow
across this curvilinear section is given by Fourier’s law, assuming unit depth
of material:

q= —k AX(I)A—T (3-21)
Ay

This heat flow will be the same through each section within this heat-flow lane,
and the total heat flow will be the sum of the heat flows through all the lanes.
If the sketch is drawn so that Ax = Ay, the heat flow is proportional to the AT
across the element and, since this heat flow is constant, the AT across each
element must be the same within the same heat-flow lane. Thus the AT across
an element is given by

ATovt:rall

AT =
N

where N is the number of temperature increments between the inner and outer
surfaces. Furthermore, the heat flow through each lane is the same since it is
independent of the dimensions Ax and Ay when they are constructed equal.
Thus we write for the total heat transfer

M M
q = };—/ k ATovera\ll = 7\7 k(T2 - TI) (3‘22)

where M is the number of heat-flow lanes. So, to calculate the heat transfer,
we need only construct these éurvilinear-square plots and count the number
of temperature increments and heat-flow lanes. Care must be taken to construct
the plot so that Ax = Ay and the lines are perpendicular.

The accuracy of this method is dependent entirely on the skill of the person
sketching the curvilinear squares. Even a crude sketch, however, can frequently
help to give fairly good estimates of the temperatures that will occur in a body;
and these estimates may then be refined with numerical techniques discussed
in Sec. 3-5. An electrical analogy may be employed to sketch the curvilinear
squares, as discussed in Sec. 3-9.

The graphical method presented here is mainly of historical interest to show
the relation of heat-flow lanes and isotherms. It may not be expected to be
used for the solution of many practical problems.

3-4 THE CONDUCTION SHAPE FACTOR

In a two-dimensional system where only two temperature limits are involved,
we may define a conduction shape factor S such that

q = kS AToverall (3'23)

The values of § have been worked out for several geometries and are sum-
marized in Table 3-1. A very comprehensive summary of shape factors for a
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L /" >AL
A r/D

=

Fig. 3-4 Sketch illustrating dimensions for use in calculating three-
dimensional shape factors.

large variety of geometries is given by Hahne and Grigull [23]. Note that the
inverse hyperbolic cosine can be calculated from

cosh x=In(x = Vs2-1)

For a three-dimensional wall, as in a furnace, separate shape factors are
used to calculate the heat flow through the edge and corner sections. When all
the interior dimensions are greater than one-fifth of the wall thickness,

A
Swa = I Secage = 0.54D Scomer = 0.15L

where A = area of wall
L = wall thickness
D = length of edge

These dimensions are illustrated in Fig. 3-4. Note that the shape factor per unit
depth is given by the ratio M/N when the curvilinear-squares method is used
for calculations. The use of the shape factor for calculation purposes is illus-
trated in Examples 3-1 and 3-2.

s EXAMPLE 3-1 Buried pipe

A horizontal pipe 15 cm in diameter and 4 m long is buried in the earth at a depth of
20 cm. The pipe-wall temperature is 75°C, and the earth surface temperature is 5°C.
Assuming that the thermal conductivity of the earth is 0.8 W/m - °C, calculate the heat
lost by the pipe.

Solution

We may calculate the shape factor for this situation using the equation given in Table
3-1. Since D < 3r,

s = __2aL _ 2mw(4)
cosh='(D/r) ~ cosh-1(20/7.5)

=1535m
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The heat flow is calculated from
g = kS AT = (0.8)(15.35X75 — 5) = 859.6 W [2933 Btu/h]

EXAMPLE 3-2 Cubical furnace

A small cubical furnace 50 by 50 by 50 cm on the inside is constructed of fireclay brick
[k = 1.04 W/m - °C] with a wall thickness of 10 cm. The inside of the furnace is
maintained at 500°C, and the outside is maintained at 50°C. Calculate the heat lost
through the walls.

Solution

We compute the total shape factor by adding the shape factors for the walls, edges,
and corners:

A (0.5)0.5)
Walls: === ——=12.
alls S L 0.1 2.5m
Edges: S = 0.54D = (0.54)(0.5) = 0.27m
Corners: S = 0.15L = (0.15)0.1) = 0.015 m

There are six wall sections, twelve edges, and eight corners, so that the total shape
factor is

S = (6)2.5) + (12)(0.27) + (8)(0.015) = 18.36 m
and the heat flow is calculated as
q = kS AT = (1.04)(18.36)(500 — 50) = 8.592 kW (29,320 Btw/h]

3.5 NUMERICAL METHOD OF ANALYSIS

An immense number of analytical solutions for conduction heat-transfer prob-
lems have been accumulated in the literature over the past 100 years. Even so,
in many practical situations the geometry or boundary conditions are such that
an analytical solution has not been obtained at all, or if the solution has been
developed, it involves such a complex series solution that numerical evaluation
becomes exceedingly difficult. For such situations the most fruitful approach
to the problem is one based on finite-difference techniques, the basic principles
of which we shall outline in this section.

Consider a two-dimensional body which is to be divided into equal incre-
ments in both the x and y directions, as shown in Fig. 3-5. The nodal points
are designated as shown, the m locations indicating the x increment and the n
locations indicating the y increment. We wish to establish the temperatures at
any of these nodal points within the body, using Eq. (3-1) as a governing
condition. Finite differences are used to approximate differential- incréements
in the temperature and space coordinates; and the smaller we choose these
finite increments, the more closely the true temperature distribution will be
approximated.

The temperature gradients may be written as follows:
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Fig. 3-5 Sketch illustrating nomenclature used in two-
dimensional numerical analysis of heat conduction.

g- ~ Tm+l,n — Tm,n
ax_j m+1/2,n Ax
QZ— ~ Tm.n - Tm—l,n
ax_‘ m-—1/2,n Ax
aTﬁ Tm,n+l - Tm,n
—_ o mntrl T ma
8y Imn+112 Ay
g- ~ Tm.n — Tm,n—l
ay_J mn—1/2 Ay

a_T] _ a_T]
ﬂ] = 0x m+172.n ax m—1/2.n - T’""'lv" + Tm—l,n - 2Tm.n

ax? Ax B (Ax)?

a_T] _ gz]
gz_T] == ay mat12 ay m,n—172 — Tm,"*'l + Tm,n-l - 2Tm,n
3y* Jm.n Ay (Ay)?
Thus the finite-difference approximation for Eq. (3-1) becomes

Tm+l.h + Tm—l.n - 2Tm.n + Tm.n+l + Tm.n—l - 2Tm.n
(Ax)? Aay)

=0

If Ax = Ay, then
Tm+l.n + Tm—l,n + Tm.n+l + Tm.n—l - 4Tm.n =0 (3‘24)

Since we are considering the case of constant thermal conductivity, the heat
flows may all be expressed in terms of temperature differentials. Equation
(3-24) states very simply that the net heat flow into any node is zero at steady-
state conditions. In effect, the numerical finite-difference approach replaces
the continuous temperature distribution by fictitious heat-conducting rods con-
nected between small nodal points which do not generate heat.

We can also devise a finite-difference scheme to take heat generation into
account. We merely add the term g/k into the general equation and obtain
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Tm + 1. + Tm -1 2Tm.n Tm.u+ 1 T Tm.n— [ ZTm.n
+ +
(Ax)? (Ay)?

Then for a square grid in which Ax = Ay,

AT pn

]

; 2
g_(A_kx_z_ - 0 (3-24a)

Tm+l.n + Tm-l,n + Tm.n+| + Tm.n-—l +

To utilize the numerical method, Eq. (3-24) must be written for each node
within the material and the resultant system of equations solved for the tem-
peratures at the various nodes. A very simple example is shown in Fig. 3-6,
and the four equations for nodes 1, 2, 3, and 4 would be

100 + 500 + T, + T; — 4T, = 0
T, + 500 + 100 + T, — 4T, = 0
100+ 7T, + T, + 100 — 4T3, =0
T, + T, + 100 + 100 — 4T, = 0

These equations have the solution
T| = Tz = 250°C T3 = T4 = ISOOC

Of course, we could recognize from symmetry that T, = T, and T; = T, and
would then only need two nodal equations,

100 + 500 + T; — 3T,
100 + T, + 100 — 3T;

0
0

il

Once the temperatures are determined, the heat flow may be calculated from

AT
q—EkAny-

where the AT is taken at the boundaries. In the example the heat flow may be
calculated at either the 500°C face or the three 100°C faces. If a sufficiently
fine grid is used, the two values should be very nearly the same. As a matter

T = 500°C

100°C
100°C

T=
T=

7=100°C Fig. 3-6 Four-node problem.
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of general practice, it is usually best to take the arithmetic average of the two
values for use in the calculations. In the example the two calculations yield:

500°C face:
q= —k % [(250 — 500) + (250 — 500)1 = 500k
100°C face:

q= -ki—i [(250 — 100) + (150 — 100) + (150 — 100) + (150 — 100)
+ (150 — 100) + (250 — 100)) = - SO0k

and the two values agree in this case. The calculation of the heat flow in cases
in which curved boundaries or complicated shapes are involved is treated in
Refs. 2, 3, and 15.

When the solid is exposed to some convection boundary condition, the
temperatures at the surface must be computed differently from the method
given above. Consider the boundary shown in Fig. 3-7. The energy balance on
node (m, n) is

mn — dm—1.n A Tmn—Tmn A Tmn_Tmn
—kAyT_AxT_!—_ka__A;_H_ka—TH

= hAy(Tm.n - T.)

If Ax = Ay, the boundary temperature is expressed in the equation

Tm,n <hit + 2) - h Ax Tm - 1(ZTm—l.n + Tm.n+l + Tm.n—l) =0 (3'25)
k k 2
An equation of this type must be written for each node along the surface shown
in Fig. 3-7. So when a convection boundary condition is present, an equation
like (3-25) is used at the boundary and an equation like (3-24) is used for the
interior points.
Equation (3-25) applies to a plane surface exposed to a convection boundary

Fig. 3-7 Nomenclature for nodal equation with con-
vective boundary condition.
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condition. It will not apply for other situations, such as an insulated wall or a
corner exposed to a convection boundary condition. Consider the corner sec-
tion shown in Fig. 3-8. The energy balance for the corner section is

2 Ax 2 Ay
= hE (T~ T + 2., - 1)

Ay Tm,n - Tm—l.m - kg Tm,n - Tm.n—l

If Ax = Ay,

k k

Other boundary conditions may be treated in a similar fashion, and a con-
venient summary of nodal equations is given in Table 3-2 for different geo-
metrical and boundary situations. Situations f and g are of particular interest
since they provide the calculation equations which may be employed with
curved boundaries, while still using uniform increments in Ax and Ay.

2Tm,,,(w + 1) - 2ﬂ To = Tp-1n + Tu-1) = 0 (3-26)

EXAMPLE 3-3

Consider the square of Fig. 3-6. The left face is maintained at 100°C and the top face
at 500°C, while the other two faces are exposed to an environment at 100°C:

h =10 W/m? - °C and k=10W/m - °C
The block is 1 m square. Compute the temperatures of the various nodes as indicated
in Fig. 3-9 and the heat flows at the boundaries.
Solution
The nodal equation for nodes 1, 2, 4, and S is
Tmirn ¥ Tmovn + Tnnst + Ty — 47, =0

The equation for nodes 3, 6, 7, and 8 is given by Eq. (3-25), and the equation for 9 is
given by Eq. (3-26):
hAx (101 1

kK (3)10) 3

m-—1l,n m,n

y oo
Fig. 3-8 Nomenclature for nodal equation with con-
vection at a corner section.
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T=500°C

ou I'm

3

[ T, =
AN 100°C

Fig. 3-9 Nomenclature for Example 3-3.

The equations for nodes 3 and 6 are thus written

2T, + Tg + 567 — 4.67T, = 0
2T; + Ty + Ty, + 67 — 4.67T, = 0
The equations for nodes 7 and 8 are given by
2T, + Ty + 167 — 4.67T, = 0
2T+ T, + Ty + 67 — 4671, = 0

and the equation for node 9 is
Tg + Tg + 67 — 2.67T9 = 0

We thus have nine equations and nine unknown nodal temperatures. We shail discuss
solution techniques shortly, but for now we Jjust list the answers:

g

Temperature, °C

280.67
330.30
309.38
192.38
231.15
217.19
157.70
184.71
175.62

OGN B WN

The heat flows at the boundaries are computed in two ways: as conduction flows for
the 100 and 500°C faces and as convection flows for the other two faces. For the 500°C
face, the heat flow into the face is

LT
q = 2kAx -A;

= 4843.4 W/m

= (10)[500 — 280.67 + 500 — 330.30 + (500 — 309.38)(%)]
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The heat flow out of the 100°C face is

q = XkAy %—f = (10)[280.67 — 100 + 192.38 — 100 + (157.70 — 100)(})]

3019 W/m
The heat flow out the right face is given by the convection relation
q=ShAWT - T)
(10)(})[309.38 — 100 + 217.19 — 100 + (175.62 — 100)})]
1214.6 W/m
Finally, the heat flow out the bottom face is
q=2hAx(T - T.)

= (10)H[(100 — 100)}) + 157.70 — 100 + 184.71 — 100 + (175.62 — 100)(®)]
= 600.7 W/m

The total heat flow out is
Gow = 3019 + 1214.6 + 600.7 = 4834.3 W/m
This compares favorably with the 4843.4 W/m conducted into the top face.

7 Solution Techniques

From the foregoing discussion we have seen that the numerical method is simply
a means of approximating a continuous temperature distribution with the finite
nodal elements. The more nodes taken, the closer the approximation; but, of
course, more equations mean more cumbersome solutions. Fortunately, com-
puters and even programmable calculators have the capability to obtain these
solutions very quickly.

In practical problems the selection of a large number of nodes may be
unnecessary because of uncertainties in boundary conditions. For example, it
is not uncommon to have  acertainties in &, the convection coefficient of +15
to 20 percent.

The nodal equations may be written as

ayT, + apTo + - -+ + a1, = C
a2|T, + azsz + - = C2
03|T| + - = C3 (3-27)
aanI + anZTZ + -+ almTu = Cn
where ), Ts, . . . , T, are the unknown nodal temperatures. By using the matrix

notation
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[C, ] [T, ]
a1 apn2 Qin C. T
2 2
az Gxn .
[A] = [ay - -- =\ (n =
Qn1 Gn2 Gnn _'C‘"J _.T'u
Eq. (3-27) can be expressed as
[AllT] = [C] (3-28)
and the problem is to find the inverse of [A] such that
(1] = [A)7'[C] (3-29)
Designating [A] ! by
bll bIZ bln
4 = | b
bnl bn2 bnn

the final solutions for the unknown temperatures are written in expanded
form as

T] = b”C] + b|2C2 + -+ b,,,C,,
T, = b,C + - - - 3-30)

.........................

T,, = b,,|C| + b,,zCz + -+ b,.,,C,,

Clearly, the larger the number of nodes, the more complex and time-consuming
the solution, even with a high-speed computer. For most conduction problems
the matrix contains a large number of zero elements so that some simplification
in the procedure is afforded. For example, the matrix notation for the system
of Example 3-3 would be

-4 1. 0 1.0 0 o o o 17 [ 600 ]
1-4 1 0 1 0 0 o0 0 T, - 500
0 2-4670 0 1 0 o0 0 T, - 567
1 0 0 -4 1 0 1 o0 0 T, ~100
0 1 0 1-4 1 o0 1 0 Ts | = 0
0 0 1 0 2-4670 0 1 T, -67
0 0 0 2 0 0 -467 1 0 T, ~ 167
0 0 0 0 2 0 1 -467 1 Ty -67
L0 o 0o o0 0 1 o 1 -26)[71] | -6

We see that because of the structure of the equations the coefficient matrix is
very sparse. For this reason iterative methods of solution may be very efficient.
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The Gauss-Seidel method is one which we shall discuss later. An old method
suitable for hand calculations with a small number of nodes is called the re-
laxation method. In this technique the nodal equation is set equal to some
residual g, . and the following calculation procedure followed:

1. Values of the nodal temperatures are assumed.

2. The value of the residual for each node is calculated from the respective
equation and the assumed temperatures.

3. The residuals are ‘‘relaxed’’ to zero by changing the assumptions of the
nodal temperatures. The largest residuals are usually relaxed first.

4. As each nodal temperature is changed, a new residual must be calculated
for connecting nodes.

5. The procedure is continued until the residuals are sufficiently close to zero.

In Table 3-3 a relaxation solution for the system of Fig. 3-6 is shown. For the
most part, the relaxation method would be employed as an expedient vehicle
only when a computer was not readily available.

Other methods of solution include a transient analysis carried through to
steady state (see Chap. 4), direct elimination (Gauss elimination [9]), or more
sophisticated iterative techniques [14]. A number of large computer programs
are available for the solution of heat-transfer problems. Kern and Kraus {19]
present both steady-state and transient programs which can handle up to 300
nodes. A general circuit-analysis progam applicable to heat-transfer problems
is available in Ref. 17, and most computer centers have some kind of in-house
program available for heat-transfer computations. Further information on nu-
merical techniques is given in Refs. 11 to 19.

Table 3-3 Relaxation Table for System of Fig. 3-6

T, ' T, G2 T, qs T, '
300 - 100 300 - 100 200 -100 200 - 100
275 0 -125 - 125
-30 270 -5 - 130
—45 — 165 160 30
-70 160 -5 -10
255 10 - 65 -25
0 260 -25 -20
-5 155 -5 -25
-15 250 15 -35
S -15 150 5
-20 150 5 0

250 0 0 0
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3-6 NUMERICAL FORMULATION IN TERMS OF

RESISTANCE ELEMENTS

Up to this point we have shown how conduction problems can be solved by
finite-difference approximations to the differential equations. An equation is
formulated for each node and the set of equations solved for the temperatures
throughout the body. In formulating the equations we could just as well have
used a resistance concept for writing the heat transfer between nodes. Desig-
nating our node of interest with the subscript i and the adjoining nodes with
subscript j, we have the general-conduction-node situation shown in Fig. 3-10.
At steady state the net heat input to node i must be zero or

a+2LTi_y (3-31)
;5 Ty
where g; is the heat delivered to node i by heat generation, radiation, etc. The
Ry can take the form of convection boundaries, internal conduction, etc., and
Eq. (3-31) can be set equal to some residual for a relaxation solution or to zero
for treatment with matrix methods.

No new information is conveyed by using a resistance formulation, but some
workers may find it convenient to think in these terms. When a numerical
solution is to be performed which takes into account property variations, the
resistance formulation is particularly useful.

For convenience of the reader Table 3-4 lists the resistance elements which
correspond to the nodes in Table 3-2. Note that all resistance elements are for
unit depth of material and Ax = Ay. The nomenclature for the table is that
R, . refers to the resistance on the positive x side of node (m,n), R,_ refers
to the resistance on the negative y side of node (m,n), and so on.

The resistance formulation is also useful for numerical solution of compli-
cated three-dimensional shapes. The volume elements for the three common
coordinate systems are shown in Fig. 3-11, and internal nodal resistances for
each system are given in Table 3-5. The nomenclature for the (m, n, k) subscripts
is given at the top of the table, and the plus or minus sign on the resistance
subscripts designates the resistance in a positive or negative direction from the
central node (m, n, k). The elemental volume AV is also indicated for each
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1 g,

4

(a)

(-Y’)

Ron s ©

o

)

Fig. 3-11  Volume and resistance elements: (a) cartesian, (b) cylindrical, and (c) spherical coordinate
systems.

coordinate system. We note, of course, that in a practical problem the coor-

dinate increments are frequently chosen so that Ax = Ay = Az, etc., and the
resistances are simplified.

3-7 GAUSS-SEIDEL ITERATION

When the number of nodes is very large, an iterative technique may frequently
yield a more efficient solution to the nodal equations than a direct matrix
inversion. One such method is called the Gauss-Seidel iteration and is applied
in the following way. From Eq. (3-31) we may solve for the temperature 7, in
terms of the resistances and temperatures of the adjoining nodes T; as

q + 2 (T/Ry)

— _J -
T = > (1/Ry) (3-32)
J
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Table 3-5 Internal Nodal Resistances for Different Coordinate Systems

Cartesian Cylindrical Spherical
Nomenclature for x,m r,m r,m
increments y, n ¢, n ¢, n
z, k z, k 8,k
Volume element AV Ax Ay Az rm Ar Ad Az r.sin @ Ar Ad A8
R,.. Ax Ar Ar
Ay Az k (rn. + Arf2) AP Az k (rn + Arf2)2sin 6 Ad AO k
R.._ Ax Ar Ar
Ay Az k (rm — Arl2) Ad Az Kk (rm + Arf2) sin 0 A¢ AO Kk
R,. Ay rn Ad A¢ sin 8
Ax Az k ArAzk Ar A6 k
R, Ay rn Ad A sin 6
Ax Az k Ar Az k Ar A0k L
Rk+ AZ AZ AO
Ax Ay k rm Ad Ark sin (0 + AG2) ArAd k
R, Az Az A8
Ax Ay k rmAd Ark sin (8 — A02) Ar AP k

The Gauss-Seidel iteration makes use of the difference equations expressed
in the form of Eq. (3-32) through the following procedure.

1. An initial set of values for the T; is assumed. This initial assumption can be
obtained through any expedient method. For a large number of nodes to be
solved on a computer the T;’s are frequently assigned a zero value to start
the calculation.

2. Next, the new values of the nodal temperatures T; are calculated according
to Eq. (3-32), always using the most recent values of the T;.

3. The process is repeated until successive calculations differ by a sufficiently
small amount. In terms of a computer program, this means that a test will
be inserted to stop the calculations when

| o, — T,,| =& forallT;
where 8 is some selected constant and n is the number of iterations. Alterna-
tively, a nondimensional test may be selected such that
Tirv+l - Ti
T;
Obviously, the smaller the value of 8, the greater the calculation time required
to obtain the desired result. The reader should note, however, that the accuracy

€=
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of the solution to the physical problem is not dependent on the value of & alone.
This constant governs the accuracy of the solution to the set of difference
equations. The solution to the physical problem also depends on the selection
of the increment Ax.

As we noted in the discussion of solution techniques, the matrices encoun-
tered in the numerical formulations are very sparse; i.e., they contain a large
number of zeros. In solving a problem with a large number of nodes it may be
quite time-consuming to enter all these zeros and the simple form of the Gauss-
Seidel equation may be preferable.

For nodes with Ax = Ay and no heat generation, the form of Eq. (3-32) has
been listed as the second equation in segments of Table 3-2. The nondimensional
group

hAx _

X Bi

is called the Biot number.

3-8 ACCURACY CONSIDERATIONS

We have already noted that the finite difference approximation to a physical
problem improves as smaller and smaller anc smaller increments of Ax and Ay
are used. But, we have not said how to estimate the accuracy of this approx-
imation. Two basic approaches are available.

1. Compare the numerical solution with an analytical solution for the problem,
if available, or an analytical solution for a similar problem.

2. Choose progressively smaller values of Ax and observe the behavior of the
solution. If the problem has been correctly formulated and solved, the nodal
temperatures should converge as Ax becomes smaller. It should be noted
that computational round-off errors increase with an increase in the number
of nodes because of the increased number of machine calculations. This is
why one needs to observe the convergence of the solution.

It can be shown that the error of the finite-difference approximation to 97/ox
is of the order of (Ax/L)? where L is some characteristic body dimension.

Analytical solutions are of limited utility in checking the accuracy of a nu-
merical model because most problems which will need to be solved by numerical
methods either do not have an analytical solution at all, or if one is available
it may be too cumbersome to compute.

In discussing solution techniques for nodal equations, we stated that an
accurate solution of these equations does not ensure an accurate solution to
the physical problem. In many cases the final solution is in serious error simply
because the problem was not formulated correctly at the start. No computer
or convergence criterion can correct this kind of error. One way to check for
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formulation errors is to perform some sort of energy balance using the final
solution. The nature of the balance varies from problem to problem but for
steady state it always takes the form of energy in equals energy out. If the
energy balance does not check within reasonable limits, there is a likelihood
that the problem has not been formulated correctly. Perhaps a constant is wrong
here or there, or an input data point is incorrect, a faulty computer statement
employed, or one or more nodal equations are incorrectly written. If the energy
balance does check, one may then address the issue of using smaller values of
Ax to improve accuracy.

In the examples we present energy balances as a check on problem for-
mulation.

Accuracy of Properties and Boundary Conditions

From time to time we have mentioned that thermal conductivities of materials
vary with temperature; however, over a temperature range of 100 to 200°C the
variation is not great (on the order of 5 to 10 percent) and we are justified in
assuming constant values to simplify problem solutions. Convection and ra-
diation boundary conditions are particularly notorious for their nonconstant
behavior. Even worse is the fact that for many practical problems the basic
uncertainty in our knowledge of convection heat-transfer coefficients may not
be better than =20 percent. Uncertainties of surface-radiation properties of
+10 percent are not unusual at all. For example, a highly polished aluminum
plate, if allowed to oxidize heavily, will absorb as much as 300 percent more
radiation than when it was polished.

The above remarks are not made to alarm the reader, but rather to show
that selection of a large number of nodes for a numerical formulation does not
necessarily produce an accurate solution to the physical problem; we must also
examine uncertainties in the boundary conditions. At this point the reader is
ill-equipped to estimate these uncertainties. Later chapters on convection and
radiation will clarify the matter.

Some Remarks on Computer Solutions

It should be apparent by now that numerical methods and computers give the
engineer tools for solving very complex heat-transfer problems. The advent of
the microcomputer has made desktop computer power available to everyone
at very economical prices. How should one choose between micro, mini, or
mainframe computers for solution of heat transfer problems? For modest-size
problems, including many heat-exchanger design problems (Chap. 10), we may
expect that they will be solved more and more with microcomputers. Large
problems, particularly those involving many repetitive calculations with varying
boundary conditions will probably remain a task for high-speed mainframe
machines. Networks and communication links between micros and large ma-
chines will offer «ther opportunities.
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Many software packages are available for solving heat-transfer problems on
microcomputers but their availability changes so rapidly that it would be futile:
to try to mention specific ones in a textbook. One characteristic common to
almost all heat-transfer software is a requirement that the user wnderstand
something about the subject of heat transfer. Without such understanding it
can become very easy to make gross mistakes and never detect them at all.
Of course, our objective in this book is to give the reader such an understanding
of the subject.

EXAMPLE 3-4 Gauss-Seidel calculation

Apply the Gauss-Seidel technique to obtain the nodal temperatures for the four nodes
in Fig. 3-6.

Solution

It is useful to think in terms of a resistance formulation for this problem because all the
connecting resistances between the nodes in Fig. 3-6 are equal; that is,

R=—"=—"=_ (@)

Therefore, when we apply Eq. (3-32) to each node, we obtain (q;. = 0)

kT,
T, = -4 b
i 2 kj ( )
‘ Jj
Because each node has four resistances connected to it and k is assumed constant,
Jj
1
and T.=-3T, (c)
45

We now set up an iteration table as shown and use initial temperature assumptions of
300 and 200°C as before. Equation (c) is then applied repeatedly until satisfactory con-
vergence is achieved. In the table, five iterations produce convergence with 0.13 degree.
To illustrate the calculation, we can note the two specific cases below:

(T2)aay = H(500 + 100 + T, + T,) = 4500 + 100 + 200 + 275) = 268.75
(T3)azs = H100 + T, + T, + 100) = (100 + 250.52 + 150.52 + 100) = 150.26

Number of

iterations n T, T, T, T,
300 300 200 200
275 268.75 168.75 159.38

259.38 254.69 154.69 152.35
251.76 251.03 151.03 150.52
250.52 250.26 150.26 150.13
250.13 250.07 150.07 150.03

M hbWN =
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Note that in computing (7),.s we have used the most recent information available to
us for T, and T,.

EXAMPLE 3-5 Numerical formulation with heat generation

We illustrate the resistance formulation in cylindrical coordinates by considering a 4.0-
mm-diameter wire with uniform heat generation of 500 MW/m’. The outside surface
temperature of the wire is 200°C, and the thermal conductivity is 19 W/m - °C. We wish
to calculate the temperature distribution in the wire. For this purpose we select four
nodes as shown in the accompanying figure. We shall make the calculations per unit
length, so we let Az = 1.0. Because the system is one-dimensional, we take A¢ = 2.
For all the elements Ar is chosen as 0.5 mm. We then compute the resistances and
volume elements using the relations from Table 3-6 and the values are given below.
The computation of R,,, for node 4 is different from the others because the heat-flow
path is shorter. For node 4, r,, is 1.75 mm, so the positive resistance extending to the
known surface temperature is

_ Arl2 1
T (r. + Arld) AP Az k 157k

The temperature equation for node 4 is written as

2749 + 6mkT; + 157k(200)
h 21wk

Rm+

I,

where the 200 is the known outer surface temperature.

LT Rm+9 Rn—-9 AV = ",,,A"A¢AZ, q: = llAV,
Node mm °C/W °C/W pm? w
I 0.25 ! ® 0.785 392.5
’ 27k ’ ’
1 |
2 0.75 s Tk 2.356 1178
1 |
3 1.25 ar-l: yyors 3.927 1964
| ]
4 1.75 m gr—/; 5.498 2749

Fig. Ex. 3-5 Example schematic.



104 Steady-state conduction—multiple dimensions

A summary of the values of 2(1/R;) and T, according to Eq. (3-32) is now given to be
used in a Gauss-Seidel iteration scheme.

1 q. + X(T/R,)
—, WPC T, = o
Node ER;; 2(1/R;) )
1 2wk = 119.38 T, =328+ T, ?\
2 6wk = 358.14 T, = 3.289 + AT, + 3T, ’
3 107k = 596.90 T, = 3.290 + 0.4T, + 0.6T,
4 21wk = 1253.50 T, = 2.193 + 3T, + 142.857

Thirteen iterations are now tabulated:

Node temperature, °C

Iteration n T, T, T, T,
0 240 230 220 210 i
1 233.29 227.72 220.38 208.02 A
2 231.01 227.21 218.99 207.62 ’,
3 230.50 226.12 218.31 207.42
4 229.41 225.30 217.86 207.30
5 228.59 224.73 217.56 207.21
6 228.02 224.34 217.35 207.15
7 227.63 224.07 217.21 207.11
8 227.36 223.88 217.11 207.08
9 227.17 223.75 217.04 207.06
10 227.04 223.66 216.99 207.04
11 226.95 223.60 216.95 207.04
12 226.89 223.55 216.93 207.03
13 226.84 223.52 216.92 207.03 }
Analytical 225.904 222.615 216.036 206.168 A
Gauss-Seidel ’,
check 225.903 222.614 216.037 206.775
Exact solution
of nodal
equations 226.75 223.462 216.884 207.017

We may compare the iterative solution with an exact calculation which makes use of
Eq. (2-25a):

T =4 g
T-T.= (R - P

where T, is the 200°C surface temperature, R = 2.0 mm, and r is the value of r,, for i
each node. The analytical values are shown below the last iteration, and then a Gauss- !
Seidel check is made on the analytical values. There is excellent agreement on the first
three nodes and somewhat less on node 4. Finally, the exact solutions to the nodal
equations are shown for comparison. These are the values the iterative scheme would
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Tr-T, . °C

Fig. Ex. 3-5§ Comparison of analytical and
numerical solutions.

converge to if carried far enough. In this limit the analytical and numerical calculations
differ by a constant factor of about 0.85°C, and this difference results mainly from the
way in which the surface resistance and boundary condition are handled. A smaller
value of Ar near the surface would produce better agreement. A graphical comparison
of the analytical and numerical solutions is shown in an accompanying figure.

The total heat loss from the wire may be calculated as the conduction through R., .
at node 4. Then

T, - T

g = Y = 15mk(207.03 ~ 200) = 6.294 kW/m (6548 Btu/h - fi]

This must equal the total heat generated in the wire, or
g = gV = (500 x 109m2 x 10732 = 6.283 kW/m ({6536 Btu/h - ft]

The difference between the two values results from the inaccuracy in determination of
T,. Using the exact solution value of 207.017°C would give a heat loss of 6.2827 kW.
For this problem the exact value of heat flow is 6.283 kW because the heat generation
calculation is independent of the finite difference formulation.

EXAMPLE 3-6 Heat generation with nonuniform nodal elements

A layer of glass [k = 0.8 W/m - °C] 3 mm thick has thin 1-mm electric conducting strips
attached to the upper surface, as shown in the figure. The bottom surface of the glass
is insulated, and the top surface is exposed to a convection environment at 30°C with
h = 100 W/m? - °C. The strips generate heat at the rate of 40 or 20 W per meter of
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length. Determine the steady-state temperature distribution in a typical glass section,
using the numerical method for both heat-generation rates.

Solution

The nodal network for a typical section of the glass is shown in the figure. In this
example we have not chosen Ax = Ay. Because of symmetry, T, = T,, T, = T,, etc.,
and we only need to solve for the temperatures of 16 nodes. We employ the resistance
formulation. As shown, we have chosen Ax = $ mm and Ay = 1 mm. The various
resistances may now be calculated:

Nodes 1, 2, 3, 4:
I _ 1 _ kAy2) _ (0.8)(0.001/2) _ 0.08
Rn. R.._ Ax 0005
Rl = hA = (100)0.005) = 0.5
1 kAx _ (0.8)(0.005) 40
R.. Ay 0001
Nodes 8,9, 10, 11, 15, 16, 17, 18:
1 _ 1 kay (0.8%0.001) _ 0.16
Rn.. R.. Ax 0005
1 1 k Ax
R. R._ & 40
I, =30°C
F————-S.Ocm I 30cm I
Heater 3 mm
_"_I'—l mm vl/ /Glass _ i
V.4
T

Insulation

T, =30°C 5 mm
Heater 1 mm

®)
Fig. Ex. 3-8 (a) Physical zystem, (b) nodal arrangement.
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Nodes 22, 23, 24, 25:
1 I KAyR2)

= = = 0.08
R,.. R.. Ax
1 k Ax
= —— =140
R,. Ay

0 (insulated surface)

The nodal equations are obtained from Eq. (3-31) in the general form
E(T,/R,,) + q — T; E(I/R;j) =0

Only node 4 has a heat-generation term, and g; = 0 for all other nodes. From the above
resistances we may calculate the 2(1/R;) as

Node (/R
1,2,3,4 4.66
8, ...,18 8.32
22, 23,24, 25 4.16

For node 4 the equation is
(2)(0.08)T; + 4.0T; + (0.5)(30) + g, — 4.66T, = 0

The factor of 2 on T, occurs because T; = Ts from symmetry. When all equations are
evaluated and the matrix is solved, the following temperatures are obtained:

Node g/L, W/m
temperature,
°C 20 40
1 31.90309 33.80617
2 32.78716 35.57433
3 36.35496 42.70993
4 49.81266 69.62532
R 32.10561 34.21122
¢ 33.08189 36.16377
10 36.95154 43.90307
11 47.82755 65.65510
15 32.23003 34.46006
16 33.26087 36.52174
17 37.26785 44.53571
18 46.71252 63.42504
22 32.27198 34.54397
23 33.32081 36.64162
24 37.36667 44.73333

25 46.35306 62.70613
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The results of the model and calculations may be checked by calculating the convection
heat lost by the top surface. Because all the energy generated in the small heater strip
must eventually be lost by convection (the bottom surface of the glass is insulated and
thus loses no heat) we know the numerical value that the convection should have. The
convection loss at the top surface is given by

g. = ZhA(T, - T.)

= (2)(100) [ézi T\ - T) + AT, + T; - 2T.) + %(T. - T,,)]

The factor of 2 accounts for both sides of the section. With T. = 30°C this calculation
yields

q. = 19.999995 for g/L = 20 W/m
q. = 40.000005 for g/L = 40 W/m

Obviously, the agreement is excellent.

H

EXAMPLE 3-7 Composite material with nonuniform nodal elements

A composite material is embedded in a high-thermal-conductivity material maintained
at 400°C as shown. The upper surface is exposed to a convection environment at 30°C
with A = 25 W/m? - °C. Determine the temperature distribution and heat loss from the
upper surface for steady state.

Solution

For this example we choose nonsquare nodes as shown. Note also that nodes 1, 4, 7,
10, 13, 14, and 15 consist of two materials. We again employ the resistance formulation.

For node 1:
1 kA _ (2.0)0.005) _
R.. Ax 0015 0.6667
1 kA _ (0.3)0.005)
R.. Ax 0.0l 0.15
Rl = hA = (25)(0.005 + 0.0075) = 0.3125
1 (kA . kA)  _ (0.3)(0.005) + (2.0%0.0075) _ 165
R.. \ay/. Ny 0.01 ‘
For nodes 4, 7, 10:
1 @ox.0n
R, oors - 3B
1 (0.3)0.01)
R~ om 93
LI S 1.65

R.. R,
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k=03Wm-°C
p = 2000 kg/m?
¢ =0.8kj/kg °C

k=2.0W/m-°C
p = 2800 kg/m?
¢ =09kJ/kg*°C
T =400°C
(a)
| 2 3 2 i
0 S (O OO0 A
Mla Ly T e | Is 4
R N N
17 E 8 I 19 IRE 9
I ! ' T
T TE o o
f T i T
P~ T T 50 s 13
T T T T
TR N SRS S N . |
|
(h)
Fig. Ex. 3-7 (a) Physical system, (b) nodal boundaries.
For node 13:
1 _ (2.0)(0.005) + (0.3)(0.005) = 0.76667
R,. 0.015
1 (0.3)(0.01)
—_— = —— = 0.3
R, _ 0.01 0
1
= 1.65
R,
1 _ (0.3)(0.0075) + (0.3)(0.005) = 0.375
R, _ 0.01
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For nodes 5, 6, 8,9, 11, 12:

I _ 1 @0)0.01) _
R.. R.,.. 0015 1.3333
1L _ 1 _ ooy .. )
R.. R, 0.01 : | |
For nodes 2, 3: /
1 __1 _ (2000005 _
R.. R,.  0.015 0.6667
R' = = (25)0.015) = 0.375
1
o 3.0
For nodes 14, 15: J
1 1 (2.0)0.005) + (0.3)(0.005) _ ; \
R.. R,_ 0.015 = 0.76667 v
1
- 3.0
1 (0.3)0.015) _
R,  0.01 =045

We shall use Eq. (3-32) for formulating the nodal equations. For node 1, 3(1/R;) = 2.7792,
and we obtain

1
2.7792

For node 3, 2(1/R;) = 4.7083, and the nodal equation is I

T, = [(400)(0.15) + (30)(0.3125) + T,(0.6667) + 1.65T.]

T, = [T,(0.6667)(2) + 3.07T, + (0.375)(30)]

l
4.7083
The factor of 2 on 7, occurs because of the mirror image of T- to the right of 7.

A similar procedure is followed for the other nodes to obtain 15 nodal equations with
the 15 unknown temperatures. These equations may then be solved by whatever com-
putation method is most convenient. The resulting temperatures are:

T, = 254956 T, = 247.637 T, = 244.454
T.=28733  T.=273.921 T, = 269.844
T, = 310.067 T, = 296.057 T, = 291.610 1
T = 327770 T,, = 313941 T, = 309.423 !
Ty, = 343.516 T, = 327.688 T, = 323.220
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The heat flow out the top face is obtained by summing the convection loss from the
nodes:

Yeonv = EhAI(TI - Tx)
(2)(25)[(0.0125)(254.96 — 30) + (0.015)(247.64 — 30) + (0.0075)(244.45 — 30)]
= 384,24 W per meter of depth

As a check on this value, we can calculate the heat conducted in from the 400°C surface
to nodes 1, 4, 7, 10, 13, 14, 15:

Yeond = EkA: E

Geona = 2 &%[(0.005)(400 — 254.96) + (0.01)(400 — 287.33)

+ (0.01)(400 — 310.07) + (0.01)(400 — 327.77)
+ (0.0225)(400 — 343.52)
+ (0.015)(400 — 327.69)
+ (0.0075)(400 — 323.22)]
= 384.29 W per meter of depth

The agreement is excellent.

EXAMPLE 3-8 Radiation boundary condition

A 1-by-2-cm ceramic strip [k = 3.0 W/m - °C, p = 1600 kg/m®. and ¢ = 0.8 kl/kg - °C]
is embedded in a high-thermal-conductivity material, as shown, so that the sides are
maintained at a constant temperature of 900°C. The bottom surface of the ceramic is
insulated, and the top surface is exposed to a convection and radiation environment at
T. = S0°C: h = 50 W/m? - °C, and the radiation heat loss is calculated from

g = cAT* — T.%)
where A = surface area
o = 5669 x 10 # W/m? - °K*
e =0.7

|

Solve for the steady-state temperature distribution of the nodes shown and the rate of
heat loss.

Solution
We shall employ the resistance formulation and note that the radiation can be written
as .

T-Ts

= 0eA(T* — T =
9 7 ( ) Rrad

(a)

geA(T? + TNT + T.) / (b)
Rrud



112 Steady-state conduction—muitiple dimensions

L
l , Ty =50°C

T ] 2 3
4 P4 T=900°C
7 8 |9
72 LSS
T=900°C Insulated Fig. Ex. 3-8

From symmetry T, = T, T, = T,, T; = T,, so we have only six unknown nodes. The
resistances are now computed:

Nodes 1, 2:
1 1 kA _ (3.000.0025) _ s 1 (3.0%0.005) 3.0
R.. R,. Ax  0.005 ) R.. 0005 7
R L. = (50)(0.005) = 0.25 (©)
! = geA(T?* + T.I(T + T»)
R:n.rad

The radiation term introduces nonlinearities and will force us to employ an iterative
solution.

Nodes 4, 5:
_ kA _ (3.0)(0.005)
Al R = & 000s - >0
Nodes 7, 8:
1 1 1
= — = 1.5 = 3.
Ro: R R,
Because the bottom surface is insulated, I/R, = 0. We now use Eq. (3-32)
T, IT)
= =Ly .32
! Z(1/R,) (3-32)
and tabulate:
Node Z(1/Ry)
1 6.25 + 1/R..q
2 6.25 + 1/R..q
4 12
5 12
7 6
8 6
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Our nodal equations are thus expressed in degrees Kelvin because of the radiation terms
and become

1

To= sqmy ST + 3T+ (1.5)(1173) + (323)(0.25)
+ oe(0.005)(T,2 + 3233)(T, + 323)(323)]
T, (1.5T,(2) + 3T« + (323)(0.25) + oe(0.005(T>* + 323°)(T + 323)(323)]

> 7 (IR,

T, = &{(1173)(3.0) + 3T, + 37, + 3Ts] Ts = %[2T43.0) + 3T, + 3T4]
T, = (1173%1.5) + 3T, + 1.5T4] Ty = d2TA1.5) + 3T4]

The radiation terms create a very nonlinear set of equations. The computational algo-
rithm we shall use is outlined as follows:

1. Assume T, = T, = 1173 K.
Compute 1/R,.qand Z(1/R,) for nodes 1 and 2 on the basis of this assumption.

Solve the set of equations for T, through 7.

2.
3.
4. Using new values of T, and T,, recalculate 1/R,,q values.
5. Solve equations again, using new values.

6.

Repeat the procedure until answers are sufficiently convergent.

The results of six iterations are shown in the table below. As can be seen, the conver-
gence is quite rapid. The temperatures are in degree Kelvin.

Tteration T] Tz T4 Tg T7 TR
1 990.840 944.929 1076.181 1041.934 1098.951 1070.442
2 1026.263 991.446 1095.279 1068.233 1113.622 1090.927
3 1019.879 982.979 1091.827 1063.462 1110.967 1087.215
4 1021.056 984.548 1092.464 1064 .344 1111.457 1087.901
S 1020.840 984.260 1092.347 1064.182 1111.367 1087.775

>

1020.879 984.313 1092.369 1064.212 1111.384 1087.798

At this point we may note that in a practical problem the value of € will only be known
within a tolerance of several percent, and thus there is nothing to be gained by carrying
the solution to unreasonable limits of accuracy.
The heat loss is determined by calculating the radiation and convection from the top
surface (nodes 1, 2, 3):
Geaq = SO€ALT* — 323%)
= (5.669 x 10 ®)(0.7)(0.005)[(2)(1020.88* — 3234 + 984.313% — 323%)
= 610.8 W/m depth
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Geconv = zhAl(I.l - 323)
(50)(0.005)((2)(1020.88 — 323) + 984.313 — 323] = S14.27 W

Grow = 610.8 + 514.27 = 1125.07 W/m depth

This can be checked by calculating the conduction input from the 900°C surfaces:

AT
Gcond = zkA:E

= (f)L(SOSQ ((0.0025)1173 — 1020.879) + (0.005)1173 ~ 1092.369)

+ (0.0025)(1173 — 1111.384)]
= 1124.99 W/m depth

The agreement is excellent.

EXAMPLE 3-9 Use of variable mesh size

One may use a variable mesh size in a problem with a finer mesh to help in regions of
large temperature gradients. This is illustrated in the accompanying figure, in which
Fig. 3-6 is redrawn with a fine mesh in the corner. The boundary temperatures are the
same as in Fig. 3-6. We wish to calculate the nodal temperatures and compare with the
previous solution. Note the symmetry of the problem; 7, = T,, T, =T,, etc.

Solution

Nodes 5. 6, 8, and 9 are internal nodes with Ax = Ay and have nodal equations in the
form of Eq. (3-24). Thus,

600 + T, + Ty — 4T =
500+ T+ T, + Ty — 4T, =
100+ Ts + T, + T,, — 4T, =
Toe + To + Ty + T\, — 4Ty =

o o o o

%’ JSOO°C

)

ot 1 0

4

100°C

100°C

100°C Fig. Ex. 3-9
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For node 7 we can use a resistance formulation and obtain

l/R']_g = k
_ KAxl6 + Axf2)
VR _soor = —_Ay/3 = 2k
]/R7_|o = 2’(

and we find
1000 + T, + 2T — 5T, = 0O
Similar resistors are obtained for node 10.
VR oo = k
VR = 2k = 1/R o,

so that
2T7 + Tg + 2T| - STw =(
For node 1,
k(Ay/6 + Ay/2)
= —————— = k
1/R|_|2 Ax/} 2
/ /
VR, = k(Ax/6 + Ax/2) - 23
Ay
]/R]..m = 2’(

and the nodal equation becomes
3T, + 3T+ T, - 7T, =0

For node 11,
_ kAyle + Ay/2) _

VR i_1000 = VR L2 = INE 2k
/R4 = k
VR, i1 = k“:’;’” = ki3
and the nodal equation becomes
600 + 6Ty, + 3Ty + T3 — 16T, = 0
Similarly, the equation for node 12 is
3T, + 6T, + 6T, + T\y — 16T, = 0
For node 13,
VR 1000 = z—i/—); = 3k = 1/Rys_14

l/R|3_|| = l/R|3_|w = le
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and we obtain
1000 + 9T,y + T\, — 20T}, = 0
Similarly for node 14,
100 + 97,3 + 9T, + T, — 20T,, = 0
Finally, from resistances already found, the nodal equation for node 3 is
200 + 9T\, + 2T, — 13T, = 0

We choose to solve the set of equations by the Gauss-Seidel iteration technique and
thus write them in the form T, = f(T)). The solution was set up on a computer with all
initial values for the T,’s taken as zero. The results of the computations are shown in
the following table.

Number of iterations

Node 2 10 20 30 50
1 59.30662 232.6668 247.1479 247.7605 247.7875
2 59.30662 232.6668 247.1479 247.7605 247.7875
3 50.11073 139.5081 147.2352 147.5629 147.5773
4 50.11073 139.5081 147.2352 147.5629 147.5773
5 206.25 288.358 293.7838 294.0129 294.023
6 248.75 359.025 366.9878 367.3243 367.3391
7 291.45 390.989 398.7243 399.0513 399.0657
8 102.9297 200.5608 208.4068 208.7384 208.753
9 121.2334 264.2423 275.7592 276.2462 276.2677
10 164.5493 302.3108 313.5007 313.974 313.9948
11 70.95459 156.9976 164.3947 164.7076 164.7215
12 73.89051 203.6437 214.5039 214.9634 214.9836
13 70.18905 115.2635 119.2079 119.3752 119.3826
14 62.82942 129.8294 135.6246 135.8703 135.8811

Note that these solutions for T, = T, = 247.79°C and T, = T, = 147.58°C are some-
what below the values of 250°C and 150°C obtained when only four nodes were em-
ployed, but only modestly so.

3-9 ELECTRICAL ANALOGY FOR TWO-DIMENSIONAL CONDUCTION

Steady-state electric conduction in a homogeneous material of constant resis-
tivity is analogous to steady-state heat conduction in a body of similar geometric

shape. For two-dimensional electric conduction the Laplace equation applies:
?E 9E
—+ —==0
ax2  9y?

where E'is the electric potential. A very simple way of solving a two-dimensional
heat-conduction problem is to construct an electrical analog and experimentally
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determine the geometric shape factors for use in Eq. (3-23). One way to ac-
complish this is to use a commercially available paper which is coated with a
thin conductive film. This paper may be cut to an exact geometric model of
the two-dimensional heat-conduction system. At the appropriate edges of the
paper, good electrical conductors are attached to simulate the temperature
boundary conditions on the problem. An electric-potential difference is then
impressed on the model. It may be noted that the paper has a very high resis-
tance in comparison with the conductors attached to the edges, so that a con-
stant-potential condition can be maintained at the region of contact.

Once the electric potential is impressed on the paper, an ordinary voltmeter
may be used to plot lines of constant electric potential. With these constant-
potential lines available, the flux lines may be easily constructed since they are
orthogonal to the potential lines. These equipotential and flux lines have pre-
cisely the same arrangement as the isotherms and heat-flux lines in the cor-
responding heat-conduction problem. The shape factor is calculated immedi-
ately using the method which was applied to the curvilinear squares.

It may be noted that the conducting-sheet analogy is not applicable to prob-
lems where heat generation is present; however, by addition of appropriate
resistances, convection boundary conditions may be handled with little trouble.
Schneider [2] and Ozisik [12] discuss the conducting-sheet method, as well as
other analogies for treating conduction heat-transfer problems, and Kayan
[4, 5] gives a detailed discussion of the conducting-sheet method.

3-10 SUMMARY

There is a myriad of analytical solutions for steady-state conduction heat-
transfer problems available in the literature. In this day of computers most of
these solutions are of small utility, despite their exercise in mathematical fa-
cilities. This is not to say that we cannot use the results of past experience to
anticipate answers to new problems. But, most of the time, the problem a
person wants to solve can be attacked directly by numerical techniques, except
when there is an easier way to do the job. As a summary, the following sug-
gestions are offered:

1. When tackling a two- or three-dimensional heat-transfer problem first try to
reduce it to a one-dimensional problem. An example is a cylinder with length
much larger than its diameter.

2. If possible, select a simple shape factor model which may either exactly or
approximately represent the physical situation. See comments under items
4 and $.

3. Seek some simple analytical solutions but, if solutions are too complicated,
go directly to the numerical techniques.

4. In practical problems recognize that convection and radiation boundary con-
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5.

ditions are subject to large uncertainties. This means that, in most practical
situations, undue concern over accuracy of solution to numerical nodal equa-
tions is unjustified.

In general, approach the solution in the direction of simple to complex, and
make use of checkpoints along the way.

REVIEW QUESTIONS

1

What is the main assumption in the separation-of-variables method for solving
Laplace’s equation?

Define the conduction shape factor.

What is the basic procedure in setting up a numerical solution to a two-dimensional
conduction problem?

Once finite-difference equations are obtained for a conduction problem, what meth-
ods are available to effect a solution? What are the advantages and disadvantages
of each method, and when would each technique be applied?

Investigate the computer routines that are available at your computer center for
solution of conduction heat-transfer problems.

PROBLEMS

3-1

3-2

33

Beginning with the separation-of-variables solutions for A> = 0 and A2 < 0 {Eqs.
(3-9) and (3-10)], show that it is not possible to satisfy the boundary conditions for
the constant temperature aty = H with either of these two forms of solution. That
is, show that, in order to satisfy the boundary conditions

T=T aty=0
T =T, atx =0
T=T, atx = W
T=T, aty = H

either a trivial or physically unreasonable solution results when either Eq. (3-9) or
(3-10) is used.

Write out the first four nonzero terms of the series solutions given in Eq. (3-20).

What percentage error results from using only these four terms at y = H and
x = W2?

A 6.0-cm-diameter pipe whose surface temperature is maintained at 210°C passes
through the center of a concrete slab 45 cm thick. The outer surface temperatures
of the slab are maintained at 15°C. Using the flux plot, estimate the heat loss from
the pipe per unit length.

A heavy-wall tube of Monel, 2.5-cm ID and 5-cm OD, is covered with a 2.5-cm
layer of glass wool. The inside tube temperature is 300°C, and the temperature at
the outside of the insulation is 40°C. How much heat is lost per foot of length?
Take k = 11 Btw/h - ft - °F for Monel.
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3-5 A symmetrical furnace wall has the dimensions shown. Using the flux plot, obtain
the shape factor for this wall.

2m

L 4m J Fig. P3-5

36 A furnace of 1 by 2 by 3 ft inside dimensions is constructed of a material having
a thermal conductivity of 0.5 Btu/h - ft - °F. The wall thickness is 6 in. The inner
and outer surface temperatures are 1000 and 200°F, respectively. Calculate the
heat loss through the furnace wall.

3-7 A cube 35 cm on each external side is constructed of fireclay brick. The wall
thickness is 5.0 cm. The inner surface temperature is S500°C, and the outer surface
temperature-is 80°C. Compute the heat flow in watts.

3-8 Two long cylinders 8.0 and 3.0 cm in diameter are completely surrounded by a
medium with k = 1.4 W/m - °C. The distance between centers is 10 cm, and the
cylinders are maintained at 200 and 35°C. Calculate the heat-transfer rate per unit
length.

3-9 A l-m-diameter sphere maintained at 30°C is buried in the earth at a place where
k = 1.7 W/m - °C. The depth to the centerline is 2.4 m, and the earth surface
temperature is 0°C. Calculate the heat lost by the sphere.

3-10 A 20-cm-diameter sphere is totally enclosed by a large mass of glass wool. A
heater inside the sphere maintains its outer surface temperature at 170°C while
the temperature at the outer edge of the glass wool is 20°C. How much power
must be supplied to the heater to maintain equilibrium conditions?

3-11 A large spherical storage tank, 2 m in diameter, is buried in the earth at a location
where the thermal conductivity is 1.5 W/m - °C. The tank is used for the storage
of an ice mixture at 0°C, and the ambient temperature of the earth is 20°C.
Calculate the heat loss from the tank.

3-12 The solid shown in the figure has the upper surface, including the half-cylinder
cutout, maintained at 100°C. At a large depth in the solid the temperature is 300
K:k = | W/m - °C. What is the heat transfer at the surface for the region where
L =30cmand D = 10 cm?

Fig. P3-12
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3-13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

3-21

3-22

Steady-state conduction—multiple dimensions

In certain locales, power transmission is made by means of underground cables.
In one example an 8.0-cm-diameter cable is buried at a depth of 1.3 m, and the
resistance of the cable is 1.1 X 10-* /m. The surface temperature of the ground
is 25°C,and k = 1.2 W/m - °C for earth. Calculate the maximum allowable current
if the outside temperature of the cable cannot exceed 110°C.

A copper sphere 4.0 cm in diameter is maintained at 70°C and submerged in a
large earth region where £ = 1.3 W/m - °C. The temperature at a large distance
from the sphere is 12°C. Calculate the heat lost by the sphere.

Two long, eccentric cylinders having diameters of 15 and 4 cm respectively are
maintained at 100 and 20°C and separated by a material with k = 3.0 W/m - °C.
The distance between centers is 4.5 cm. Calculate the heat transfer per unit length
between the cylinders.

Two pipes are buried in the earth and maintained at temperatures of 300 and
125°C. The diameters are 8 and 16 cm, and the distance between centers is 40
cm. Calculate the heat-transfer rate per unit length if the thermal conductivity of
earth at this location is 0.7 W/m - °C.

A hot sphere having a diameter of 1.5 m is maintained at 300°C and buried in a
material with K = 1.2 W/m - °C and outside surface temperature of 30°C. The
depth of the centerline of the sphere is 3.75 m. Calculate the heat loss.

A scheme is devised to measure the thermal conductivity of soil by immersing a
long electrically heated rod in the ground in a vertical position. For design pur-
poses, the rod is taken as 2.5 cm in diameter with a length of | m. To avoid
improper alteration of the soil. the maximum surface temperature of the rod is
55°C while the soil temperature is 10°C. Assuming a soil conductivity of 1.7
W/m - °C, what are the power requirements of the electric heater in watts?

Two pipes are buried in an insulating material having k = 0.8 W/m - °C. One pipe
is 10 cm in diameter and carries a hot fluid at 300°C while the other pipe is 2.8
cm in diameter and carries a cool fluid at 15°C. The pipes are parallel and separated
by a distance of 12 cm on centers. Calculate the heat-transfer rate between the
pipes per meter of length.

At a certain location the thermal conductivity of the earth is 1.5 W/m - °C. At
this location an isothermal sphere having a temperature of 5°C and a diameter of
2.0 m is buried at a centerline depth of 5.0 m. The earth temperature is 25°C.
Calculate the heat lost from the sphere.

People are sometimes careless at universities and bury steam pipes in the earth
without insulation. Consider a 4-in pipe carrying steam at 300°F buried at a depth
of 9 in to centerline. The buried length is 100 yards. Assuming that the earth
thermal conductivity is 1.2 W/m? - °C and the surface temperature is 60°F, esti-
mate the heat lost from the pipe.

Two parallel pipes 5 cm and 10 cm in diameter are totally surrounded by loosely
packed asbestos. The distance between centers for the pipes is 20 cm. One pipe
carries steam at 110°C while the other carries chilled water at 3°C. Calculate the
heat lost by the hot pipe per unit length.
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3-31
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A long cylinder has its surface maintained at 135°C and is buried in a material
having a thermal conductivity of 15.5 W/m - °C. The diameter of the cylinder is
3 cm and the depth to its centerline is 5 cm. The surface temperature of the
material is 46°C. Calculate the heat lost by the cylinder per meter of length.

A 3-m-diameter sphere contains a mixture of ice and water at 0°C and is buried
in a semi-infinite medium having a thermal conductivity of 0.2 W/m - °C. The top
surface of the medium is isothermal at 30°C and the sphere centerline is at a depth
of 8.5 m. Calculate the heat lost by the sphere.

An electric heater in the form of a 50-by-100-cm plate is laid on top of a semi-
infinite insulating material having a thermal conductivity of 0.74 W/m - °C. The
heater plate is maintained at a constant temperature of 120°C over all its surface,
and the temperature of the insulating material a large distance from the heater is
15°C. Calculate the heat conducted into the insulating material.

A small furnace has inside dimensions of 60 by 70 by 80 cm with a wall thickness
of 5 cm. Calculate the shape factor for this geometry.

A 15-cm-diameter steam pipe at 150°C is buried in the earth near a 5-cm pipe
carrying chilled water at 5°C. The distance between centers is 15 cm and the
thermal conductivity of the earth at this location may be taken as 0.7 W/m - °C.
Calculate the heat lost by the steam pipe per unit length.

Derive an equation equivalent to Eq. (3-24) for an interior node in a three-
dimensional heat-flow problem.

Derive an equation equivalent to Eq. (3-24) for an interior node in a one-dimen-
sional heat-flow problem.

Derive an equation equivalent to Eq. (3-25) for a one-dimensional convection
boundary condition.

Considering the one-dimensional fin problems of Chap. 2, show that a nodal
equation for nodes along the fin in the accompanying figure may be expressed as

- [hP(Ax)’ N 2] _ hP(Ax)?

k.A kA Tm_(Tm‘I+Tm+I)=0

| oo ™

m-—1 m m+1

g I lo— A x —>{
Fig. P3-31

Show that the nodal equation corresponding to an insulated wall shown in the
accompanying figure is

Tm.n+| + Tm.n—l + 2Tm—l.n - 4Tm.n =0
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3-33

3-34
3-35

3-36

3-37

Fig. P3-32

For the insulated corner section shown, derive an expression for the nodal equa-
tion of node (/m,n) under steady-state conditions.

Insulated
surfaces m+1l,n

mn-1 jm+i,n-1 ll

Fig. P3-33

Derive the equation in Table 3-2f.

Derive an expression for the equation of a boundary node subjected to a constant
heat flux from the environment. Use the nomenclature of Fig. 3-7.

Set up the nodal equations for a modification of Example 3-5 in which the left
half of the wire is insulated and the right half is exposed to a convection envi-
ronment with 2 = 200 W/m? - °C and T = 20°C.

In a proposed solar-energy application, the solar flux is concentrated on a 5-cm-

OD stainless-steel tube [k = 16 W/m - °C] 2 m long. The energy flux on the tube

surface is 20,000 W/m?2, and the tube wall thickness is 2 mm. Boiling water flows ) \
inside the tube with a convection coefficient of 5000 W/m? - °C and a temperature ’
of 250°C. Both ends of the tube are mounted in an appropriate supporting bracket,

which maintains them at 100°C. For thermal-stress considerations the temperature

gradient near the supports is important. Assuming a one-dimensional system, set

up a numerical solution to obtain the temperature gradient near the supports.

An aluminum rod 2.5 ¢cm in diameter and 15 cm long protrudes from a wall
maintained at 300°C. The environment temperature is 38°C. The heat-transfer
coefficient is 17 W/m? - °C. Using a numerical technique in accordance with the
result of Prob. 3-31, obtain values for the temperature along the rod. Subsequently
obtain the heat flow from the wall at x = 0. Hint: The boundary condition at the
end of the rod may be expressed by ;

hAx  hP(Ax)? hAx  hP(Ax) _ i\'
T,,,[—k S +1] T,[  * ora = Tn =0
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where m denotes the node at the tip of the fin. The heat flow at the base is

— kA
——— Ty — T)

gx=0 = AX

where T,, is the base temperature and T,,,, is the temperature of the first incre-
ment.

Repeat Prob. 3-38, using a linear variation of heat-transfer coefficient between
base temperature and the tip of the fin. Assume h = 28 W/m? - °C at the base
and A = 11 W/m? - °C at the tip.

For the wall in Prob. 3-5 a material with k = 1.4 W/m - °C is used. The inner
and outer wall temperatures are 650 and 150°C, respectively. Using a numerical
technique, calculate the heat flow through the wall.

Repeat Prob. 3-40, assuming that the outer wall is exposed to an environment at
38°C and that the convection heat-transfer coefficient is 17 W/m? - °C. Assume
that the inner surface temperature is maintained at 650°C.

Repeat Prob. 3-3, using the numerical technique.

In the section illustrated, the surface 1-4-7 is insulated. The convection heat-
transfer coefficient at surface 1-2-3 is 28 W/m? - °C. The thermal conductivity of
the solid material is 5.2 W/m - °C. Using the numerical technique, compute the
temperatures at nodes 1, 2, 4, and 5.

Insulated
1 4 7
T, =0°C
7 5 8 30 cm
h =28 W/m?-°C -

3 6 9
le——30 cm——{

T,=Tg=Ty=38C

T3=T¢=10°C Fig. P3-43

A glass plate 3 by 12 by 12 in [k = 0.7 W/m - °C] is oriented with the 12 by 12
face in a vertical position. One face loses heat by convection to the surroundings
at 70°F. The other vertical face is placed in contact with a constant-temperature
block at 400°F. The other four faces are insulated. The convection heat-transfer
coefficient varies approximately as

h, = 0.22Ts — Tx)x~ ' Btu/h - ft* - °F

where T and T. are in degrees Fahrenheit, T is the local surface temperature,
and x is the vertical distance from the bottom of the plate, measured in feet.
Determine the convection heat loss from the plate, using an appropriate numerical
analysis. -
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345

Calculate the temperatures at points 1, 2, 3, and 4 using the numerical method.

700°C

100°C 400°C

500°C Fig. P3-45

For the block shown, calculate the steady-state temperature distribution at ap-
propriate nodal locations using the numerical method. Employ a digital computer
for the solution if possible, and take advantage of library subroutines available
in the computer center; k = 2.0 Btw/h - ft - °F.

400°F

T, = 200°F

h = 10 Btu/hr+ft2-°F j:.

3.50 in—-l

Insulated

100°F_J
e—2in Fig. P3-46
Rework Prob. 3-43, using the Gauss-Seidel iteration method.

The composite strip in the accompanying figure is exposed to the convection
environment at 300°C and 2 = 40 W/m? - °C. The material properties are k, = 20
Wim - °C, ks = 1.2 W/m - °C, and k¢ = 0.5 W/m - °C. The strip is mounted on
a plate maintained at the constant temperature of 50°C. Calculate the heat transfer
from the strip to plate per unit length of strip. Assume two-dimensional heat flow.

T.. = 300°C
: : J'o.s cm
B | 1.5cm
c T=50°C 2.0 cm
6.0 cm Fig. P3-48

The fin shown has a base maintained at 300°C and is exposed to the convection
environment indicated. Calculate the steady-state temperatures of the nodes shown
and the heat loss if k = 1.0 W/m - °C.



h=40W/m?-°C T, =20°C

| 2 3 4
1.0cm
5 6 7 8
300°C
1.0cm
F—2 cm—-‘ﬂ-—Z cm—
|« 8cm
[ Fig. P3-49
3-50 Calculate the steady-state temperatures for nodes 1 to 16 in the figure.
—-‘ lcm "—
1 2
3| |4
RS
I cm
5] le
11 s h=30W/m?-°C
T, = 10°C
91 |10 112
1
I 1 cm v
ko { 13 lla 15 16/ =
2 ¥ 2
= 1 ¢cm =
1
%05 15 cm | Tem
200°C cm
k=10W/m-°C Fig. P3-50
3-51 Calculate the steady-state temperatures for nodes 1 to 9 in the figure.
h=25W/m-°C
/ T, =5°C
[ 2 3
4 5 6
T T=100°C
9
3 /
£
7 8 9
T=100°C
Ax=Ay =25cm
k=23 W/m-°C Fig. P3-51

128



126 Steady-state conduction—multiple dimensions

3-52 Calculate the steady-state temperatures for nodes 1 to 6 in the figure.

T =50°C

T=50°C
Ax=Ay=25cm
k=1.5W/m-°C Fig. P3-52

3-53 Calculate the temperatures for the nodes indicated in the accompanying figure.
The entire outer surface is exposed to the convection environment and the entire
inner surface is at a constant temperature of 300°C. Properties for materials A
and B are given in the figure.

10°C
25 W/m?-°C

>
H
— N

kq =10 W/m-°C
kg =40 W/m-°C
Ax=Ay=1cm Fig. P3-53
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A rod having a diameter of 2 cm and a length of 10 cm has one end maintained
at 200°C and is exposed to a convection environment at 25°C with o = 40 Wim? - °C.
The rod generates heat internally at the rate of 50 MW/m® and the thermal con-
ductivity is 35 W/m - °C. Calculate the temperatures of the nodes shown in the
figure assuming one-dimensional heat flow.

/h=4OW/m2-c _L
g

Ax=2cm F'g. P3-54

=200°C
N
RE
EN
)
S’
()

T

Calculate the steady-state temperatures of the nodes in the accompanying figure.
The entire outer surface is exposed to the convection environment at 20°C and
the entire inner surface is constant at 500°C. Assume k = 20 W/m - °C.

h=10W/m?-°C
T, = 20°C

k=0.2W/m-°C Fig. P3-55

A liner of stainless steel (k¢ = 20 W/m - °C), having a thickness of 3 mm, is placed
on the inside surface of the solid in Problem 3-55. Assuming now that the inside
surface of the stainless steel is at 500°C, calculate new values for the nodal
temperatures in the low-conductivity material. Set up your nodes in the stainless
steel as necessary.

Calculate the steady-state temperatures for the nodes indicated in the accom-
panying figure.
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h=75Wm?-°C
T, =0°C
"_] cm —* / l
3|t 4[?  025cm /'OOT !
5 6 \
100°C j
Insulated K
k = 4.0 Wim-°C Fig. P3-57
' 358 The two-dimensional solid shown in the accompanying figure generates heat in-
ternally at the rate of 90 MW/m?. Using the numerical method calculate the steady
state nodal temperatures for k = 20 W/m - °C.
h=100W/m2-°C
/7’m =20°C
1 2 3 1
]
/T =100°C
-l
2
3
£
4
Insulated j l‘
Ax=Ay=1cm /
k =20W/m-°C
4 =90 MW/m? Fig. P3-58

3-59 The half-cylinder has & = 20 W/m - °C and is exposed to the convection envi-
ronment at 20°C. The lower surface is maintained at 300°C. Compute the tem-
peratures for the nodes shown and the heat loss for steady state.

T = 20°C

| 10 ¢m i k= 50 W/m?-°C

I 1 2 3

Y

Fig. P3-59
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A tube has diameters of 4 mm and 5 mm and a thermal conductivity 20 W/m? - °C.
Heat is generated uniformly in the tube at a rate of 500 MW/m* and the outside
surface temperature is maintained at 100°C. The inside surface may be assumed
to be insulated. Divide the tube wall into four nodes and calculate the temperature
at each using the numerical method. Check with an analytical solution.

Repeat Prob. 3-60 with the inside of the tube exposed to a convection condition
with h = 40 W/m? - °C. Check with an analytical calculation.

Rework Prob. 3-50 with the surface absorbing a constant heat flux of 300 W/m?
instead of the convection boundary condition. The bottom surface still remains
at 200°C.

Rework Prob. 3-53 with the inner surface absorbing a constant heat flux of 300
W/m? instead of being maintained at a constant temperature of 300°C.

Rework Prob. 3-58 with the surface marked at a constant 100°C now absorbing
a constant heat flux of 500 W/m?. Add nodes as necessary.
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UNSTEADY-STATE
CONDUCTION

B 4-1 INTRODUCTION

If a solid body is suddenly subjected to a change in environment, some time
must elapse before an equilibrium temperature condition will prevail in the
body. We refer to the equilibrium condition as the steady state and calculate
the temperature distribution and heat transfer by methods described in Chaps.
2 and 3. In the transient heating or cooling process which takes place in the
interim period before equilibrium is established, the analysis must be modified
to take into account the change in internal energy of the body with time, and
the boundary conditions must be adjusted to match the physical situation which
is apparent in the unsteady-state heat-transfer problem. Unsteady-state heat-
transfer analysis is obviously of significant practical interest because of the
large number of heating and cooling processes which must be calculated in
industrial applications.

To analyze a transient heat-transfer problem, we could proceed by solving
the general heat-conduction equation by the separation-of-variables method,
similar to the analytical treatment used for the two-dimensional steady-state
problem discussed in Sec. 3-2. We give one illustration of this method of solution
for a case of simple geometry and then refer the reader to the references for
analysis of more complicated cases. Consider the infinite plate of thickness 2L
shown in Fig. 4-1. Initially the plate is at a uniform temperature T;, and at time

zero the surfaces are suddenly lowered to T = T,. The differential equation is
*T 1T
.2 4-1
ax? .aodr @D

The equation may be arranged in a more convenient form by introduction of
the variable § = T = T,. Then

=== “-2)
a
134
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~

— x  Fig. 41 Infinite plate subjected to sudden cooling of sur-

I, g b s
I'—Z L-—'I faces.

with the initial and boundary conditions

0=0,‘=Ti“T| atr=0,0=<x=<2L {a)
6=0 atx =0,7>0 (b)
06=20 atx = 2L, 7>90 (c)

Assuming a product solution &x, 7) = X(x)¥(r) produces the two ordinary /
differential equations i

d*Xx

hadihid 2y -
dx2+)\X 0
d¥
— + ar?¥ =0
dr

where A? is the separation constant. In order to satisfy the boundary conditions
it is necessary that A2 > 0 so that the form of the solution becomes

0 = (C, cos Ax + C, sin Ax)e 2=t

From boundary condition (b), C, = 0 for 7 > 0. Because C, cannot also be )

zero, we find from boundary condition (c) that sin 2LA = 0, or i \
nm '
A—Z—L n—l,2,3,...

The final series form of the solution is therefore

«©

nmnx
0= Cne~nm2LlPar gin ——
E, i 2L
This equation may be recognized as a Fourier sine expansion with the constants
C, determined from the initial condition (a) and the following equation:

0;sin——dx=—0,~ n=l,3,5,... l'
v
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The final series solution is therefore

9 T-T, 4 21 _rwLi2ar i MTX
2 e 2 —e ~nm2LY2ar —_— =1,3,5... 4-
6T -1 "= 21 ~e sin >+ n 3 (4-3)

In Sec. 4-4, this solution will be presented in graphical form for calculation
purposes. For now, our purpose has been to show how the unsteady-heat-
conduction equation can be solved, for at least one case, with the separation-
of-variables method. Further information on analytical methods in unsteady-
state problems is given in the references

4-2 LUMPED-HEAT-CAPACITY SYSTEM

We continue our discussion of transient heat conduction by analyzing systems
which may be considered uniform in temperature. This type of analysis is called
the lumped-heat-capacity method. Such systems are obviously idealized be-
cause a temperature gradient must exist in a material if heat is to be conducted
into or out of the material. In general, the smaller the physical size of the body,
the more realistic the assumption of a uniform temperature throughout; in the
limit a differential volume could be employed as in the derivation of the general
heat-conduction equation.

a hot steel ball were immersed in a cool pan of water, the lumped-heat-
capacity method of analysis might be used if we could justify an assumption
of uniform ball temperature during the cooling process. Clearly, the temperature
distribution in the ball would depend on the thermal conductivity of the ball
material and the heat-transfer conditions from the surface of the ball to the
surrounding fluid, i.e., the surface-convection heat-transfer coefficient. We
should obtain a reasonably uniform temperature distribution in the ball if the
resistance to heat transfer by conduction were small compared with the con-
vection resistance at the surface, so that the major temperature gradient would
occur through the fluid layer at the surface. The lumped-heat-capacity analysis,
then, is one which assumes that the internal resistance of the body is negligible
in comparison with the external resistance.

The convection heat loss from the body is evidenced as a decrease in the
internal energy of the body, as shown in Fig. 4-2. Thus
dT
q=nA(T~-T.) = —cpV dr (4-4)
where A is the surface area for convection and V is the volume. The initial
condition is written

T=T, atr=0
so that the solution to Eq. (4-4) is

T-T.

e i @5)
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dT

q=hA (T -T )= —CPVE

l P
h

XI-

et Ca =pcV T
L

i i Fig. 4-2 Nomenclature for sin-
- gle-lump heat-capacity analysis.
(a) )

The thermal network for the single-capacity system is shown in Fig. 4-2b. In
this network we notice that the thermal capacity of the system is ‘‘charged’’
initially at the potential T, by closing the switch S. Then, when the switch is
opened, the energy stored in the thermal capacitance is dissipated through the
resistance 1/hA. The analogy between this thermal system and an electric sys-
tem is apparent, and we could easily construct an electric system which would
behave exactly like the thermal system as long as we made the ratio

hA 1 1

= = R, = —
pcV  RuyCuw th hA

equal to 1/R.C,, where R, and C, are the electric resistance and capacitance,
respectively. In the thermal system we store energy, while in the electric system
we store electric charge. The flow of energy in the thermal system is called
heat, and the flow of charge is called electric current. The quantity cpV/hA is
called the time constant of the system because it has the dimensions of time.
When

Cth = pCV

cpV
hA

it is noted that the temperature difference T — T has a value of 36.8 percent
of the initial difference T, — T...

Applicabllity of Lumped-Capacity Analysis

We have already noted that the lumped-capacity type of analysis assumes a
uniform temperature distribution throughout the solid body and that the as-
sumption is equivalent to saying that the surface-convection resistance is large
compared with the internal-conduction resistance. Such an analysis may be
expected to yield reasonable estimates when the following condition is met:

h(V/IA)
—_—<
k
where £ is the thermal conductivity of the solid. In sections which follow we

examine those situations for which this condition does not apply. We shall see
that the lumped-capacity analysis has a direct relationship to the numerical

0.1 (4-6)
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Table 4-1 Examples of Lumped-Capacity Systems

Approximate
value of h, h(V/A)
Physical situation k,W/m - °C wW/m? - °C k
1. 3.0-cm steel cube cooling 40 7.0 8.75 x 1074
in room air
2. 5.0-cm-glass cylinder cooled 0.8 180 2.81
by a 50-m/s airstream
3. Same as situation 2 but a 380 180 0.006
copper cylinder
4. 3.0-cm hot copper cube 380 10,000 0.132

submerged in water such
that boiling occurs

methods discussed in Sec. 4-7. If one considers the ratio V/A = s as a char-
acteristic dimension of the solid, the dimensionless group is called the Biot
number:

-}—ka = Biot number = B}

The reader should rec